DOI: https://doi.org/10.15587/1729-4061.2014.26268

Anode effect and МHD-instability in aluminium electrolyzer. Control of parameters for their prognosis

Геннадий Иванович Щербань, Иван Федорович Червоный

Abstract


The results of studying the interaction of the complex of process parameters on the occurrence and course of the "anode effect", using which will allow to significantly improve the electrolysis process and increase the electrolyzer efficiency were presented. With the appearance of the "anode effect", the current density on the free surface greatly is increased, the anode potential becomes more positive and is passivated to the potential, sufficient for the discharge of fluorine ions, fluorine ions with oxygen ions at the anode start to be discharged, the concentration of perfluorocarbons increases up to 30%. Interaction of the magnetic field with the current appears not only in the misalignment of the molten metal surface. The studies of magnetohydrodynamic processes in the electrolyzer have shown that the molten metal surface is in a state of continuous agitation and herewith the wave height can reach 45 mm. Thus, the wave height is comparable to the interpolar distance, which causes local short-circuiting.

To minimize the number of process abnormalities on the electrolyzer, the necessity of constant monitoring of a number of parameters that characterize the current state and development of abnormalities in the bath: temperature of the electrolyte and its overheating; concentration of alumina; composition of the anode gas and the ratio of CF4, CO, CO2 in flue gases; back EMF and the specific resistivity of the electrolyte; interpolar distance, height of the metal and electrolyte; ratio of the melt densities of the electrolyte and aluminum; thickness of the ledge; effective current density and its distribution under the anode face; distribution of current intensity and magnetic field in hearth; change in the shape of the working space was established.

Keywords


aluminum electrolyzer; current; electrolyte; voltage; anode effect; MHD instability

References


Grotheim, K. (1982). Aluminium electrolysis.Dusseldorf: Aluminium-Verlag, 271.

Bazhin, V. Ju., Vlasov, A. A., Lupenkov, A. V. (2011). Upravlenie anodnym jeffektom na aljuminievom jelek-trolizere. Metallurg, 5, 89–93. Available at: http://144.206.159.178/ft/7889/938203/16395881.pdf

Thonstad, J. (2006). Anode effects in aluminum electrolysis cells and ways of reducing their frequency. Aluminum Siberia-2006: Proc. Int. Conf.-Exhibition, Verso, Krasnoyarsk, 200–213.

Prediction of anode effect in aluminium electrolyzing process. Annotacija. Available at: http://en.cnki.com.cn/Article_en/CJFDTOTAL-YJZH200805003.htm. (Last access: 20.07.2014).

A new anode effect quenching procedure. Available at: http://www2.medioambiente.gov.ar/documentos/cambio_climatico/oamdl/pdd_aluar_anexo5.pdf. (Last access: 19.07.2014).

A virtual aluminum reduction cell. Available at: http://smse.csu.edu.cn/Bk/Attachments/2e694a5a-16d9-4815-ba74-3ef6af048445/A%20Virtual%20Aluminum%20Reduction%20Cell最终出版格式.pdf. (Last access: 19.07.2014).

Utkin, N. I. (1985). Metallurgija cvetnyh metallov. Moscow: Metallurgija, 440.

Borisoglebskij, Ju. V. (1999). Metallurgija aljuminija. Novosibirsk : Nauka. Sibirskaja izdatel'skaja firma RAN, 438.

Bajmakov, Ju. V., Vetjukov, M. M. (1966). Jelektroliz rasplavlennyh solej. Moscow: Metallurgija, 560.

Tabereaux, A. T. (2007). Maximum Anode Effect Voltage. Light Metals, 405–410.

Solhejm, A., Moksnes, B. P. (2007). Raspredelenie anodnogo toka v aljumi-nievyh jelektrolizjorah. Aljuminij Sibiri. Krasnojarsk.

Tabereaux, A. (2004). Anode Effects and PFC Emission Rates. Eighth Australasian Aluminium Smelter Techn. Conf. and Workshop. Queenstown, New Zealand, 532–540.

Izgaryshev, N. A., Gorbachev, S. V. (1951). Kurs teoreticheskoj jelektrohimii. Moscow: Goshimizdat, 503.

Al'chikov, V. V. (2006). Optimizacija magnitnyh polej ot tokov v oshinovke aljuminievyh jelektrolizerov. Aljuminij Sibiri. Krasnojarsk.

Sluchenkov, O. V., Poljakov, P. V., Ahmetov, S. I., Arhipov, A. G. (2008). Vzaimovlijanie polja skorostej katodnogo metalla i osadka jelektroli-zerov na silu toka 300 kA. Granica razdela metall-jelektrolit. Aljuminij Sibiri. Krasnojarsk.

Radionov, E. Ju., Ershov, V. A. (2009). Osobennosti magnitnoj gidrodinamiki jelektrolizerov OA-300 5-oj serii Irkutskogo aljuminievogo zavoda. Vestnik Irkutskogo Gosudarstvennogo Tehnicheskogo Universiteta, 4, 210–213.

Knizhnik, A. V., Bogdanov, Ju. V., Kuzakov, A. A., Radionov, E. Ju. (2007). Issledovanie MGD-stabil'nosti jelektrolizjora OA-300. Aljuminij Sibiri. Krasnojarsk.

Renbijun, A. (2007). Research of Fuzzy Control for Alumina in Henan Hongkong Longquan Aluminum Co. LTD., China. Light Metals, 4, 439–442.

Berezin, A. I., Poliakov, P. V., Rodnov, O. O. (2003). Neural Network Qualifier of Noises of Aluminium Reduction Cell. Light Metals, 4, 437–442.

Kirko, I. M., Kirko, G. E. (2009). Magnitnaja gidrodinamika: sovremennoe videnie problem. Moscow: Izhevsk: Reguljar. i haot. dinamika: In-t komp'juter. issled., 630.


GOST Style Citations


1. Grotheim, K. Aluminium electrolysis [Text] / K. Grotheim and others. – Dusseldorf: Aluminium-Verlag, 1982. – 271 p.

2. Бажин, В. Ю. Управление анодным эффектом на алюминиевом электролизере [Электронный ресурс] / В. Ю. Бажин, А. А. Власов, А. В. Лупенков // Металлург. – 2011. – № 5. – С. 89–93. – Режим доступа: http://www.twirpx.com/file/579151/

3. Thonstad, J. Anode effects in aluminum electrolysis cells and ways of reducing their frequency [Text] / J. Thonstad // Aluminum Siberia-2006: Proc. Int. Conf.-Exhibition, Verso, Krasnoyarsk, 2006. – P. 200–213.

4. Prediction of anode effect in aluminium electrolyzing process. Аннотация [Electronic resource] / Available at: http://en.cnki.com.cn/Article_en/CJFDTOTAL-YJZH200805003.htm. – Last access: 20.07.2014

5. A new anode effect quenching procedure [Electronic resource] / Available at: http://www2.medioambiente.gov.ar/documentos/cambio_climatico/oamdl/pdd_aluar_anexo5.pdf. – Last access 19.07.2014.

6. A virtual aluminum reduction cell [Electronic resource] / available at: http://smse.csu.edu.cn/Bk/Attachments/2e694a5a-16d9-4815-ba74-3ef6af048445/A%20Virtual%20Aluminum%20Reduction%20Cell最终出版格式.pdf. – Last access 19.07.2014.

7. Уткин, Н. И. Металлургия цветных металлов [Текст] / Н. И. Уткин. – М.: Металлургия, 1985. – 440 с.

8. Борисоглебский, Ю. В. Металлургия алюминия [Текст]: монография / Ю.В. Борисоглебский и др. – Новосибирск : Наука. Сибирская издательская фирма РАН, 1999. – 438 с.

9. Баймаков, Ю. В. Электролиз расплавленных солей [Текст] / Ю. В. Баймаков, М. М. Ветюков. – М.: Металлургия, 1966. – 560 с.

10. Tabereaux, A. T. Maximum Anode Effect Voltage [Text] / A. T. Tabereaux. – Light Metals, 2007. – P. 405–410.

11. Солхейм, А. Распределение анодного тока в алюминиевых электролизёрах [Текст] : сб. научн. статей / А. Солхейм, Б. П. Мокснес. – Алюминий Сибири. — Красноярск, 2007.

12. Tabereaux, A. Anode Effects and PFC Emission Rates [Text] / A. Tabereaux // Eighth Australasian Aluminium Smelter Techn. Conf. and Workshop. – Queenstown, New Zealand, 2004. – P. 532–540.

13. Изгарышев, Н. А. Курс теоретической электрохимии [Текст] / Н. А. Изгарышев, С. В. Горбачев. – Москва: Госхимиздат, 1951. – 503 с.

14. Альчиков, В. В. Оптимизация магнитных полей от токов в ошиновке алюминиевых электролизеров [Текст] : сб. научн. статей / В. В. Альчиков. – Алюминий Сибири. — Красноярск, 2006.

15. Слученков, О. В. Взаимовлияние поля скоростей катодного металла и осадка электролизеров на силу тока 300 кА. Граница раздела металл-электролит [Текст] : сб. научн. статей/ О. В. Слученков, П. В. Поляков, С. И. Ахметов, А. Г. Архипов. – Алюминий Сибири. — Красноярск, 2008.

16. Радионов, Е. Ю. Особенности магнитной гидродинамики электролизеров ОА-300 5-ой серии Иркутского алюминиевого завода [Текст] / Е. Ю. Радионов, В. А. Ершов // Вестник Иркутского Государственного Технического Университета. – 2009. – № 4. – С. 210–213.

17. Книжник, А. В. Исследование МГД-стабильности электролизёра ОА-300 [Текст] : сб. научн. статей / А. В. Книжник, Ю. В. Богданов, А. А. Кузаков, Е. Ю. Радионов. – Алюминий Сибири. — Красноярск, 2007.

18. Renbijun, А. Research of Fuzzy Control for Alumina in Henan Hongkong Longquan Aluminum Co. LTD., China [Text] / А. Renbijun // Light Metals. – 2007. – Vol. 4. – P. 439–442.

19. Berezin, A. I. Neural Network Qualifier of Noises of Aluminium Reduction Cell [Text] / A. I. Berezin, P. V. Poliakov, O. O. Rodnov // Light Metals. – 2003. – Vol. 4. – P. 437–442.

20. Кирко, И. М. Магнитная гидродинамика: современное видение проблем [Текст] / И. М. Кирко, Г. Е. Кирко. – Москва: Ижевск: Регуляр. и хаот. динамика: Ин-т компьютер. исслед., 2009. – 630 с.






Copyright (c) 2014 Геннадий Иванович Щербань, Иван Федорович Червоный

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 1729-3774, ISSN (on-line) 1729-4061