Information technology of diagnostics of electric motor condition using Volterra models

Authors

  • Светлана Николаевна Григоренко Odessa National Polytechnical University Shevchenko av., 1, Odessa, Ukraine, 65044, Ukraine
  • Сергей Витальевич Павленко Odessa National Polytechnical University Shevchenko av., 1, Odessa, Ukraine, 65044, Ukraine
  • Виталий Данилович Павленко Odessa National Polytechnical University Shevchenko av., 1, Odessa, Ukraine, 65044, Ukraine
  • Александр Алексеевич Фомин Odessa National Polytechnical University Shevchenko av., 1, Odessa, Ukraine, 65044, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.26310

Keywords:

information technologies, diagnostics, electric motors, non-linear dynamic models, identification, Volterra models

Abstract

The considerable growth of researches on the nonlinear systems based on the Volterra mathematical apparatus of integro-power series was generated by the necessity of using models of real objects of control and operation of enhanced accuracy, totally different from linear models. Moreover, they allow to develop by analogy the created methodological base for solving tasks of identification and diagnosis of dynamic systems at an entirely new level. This research provides the information diagnostic technology of motor operating conditions, which is based on the methods of non-parametric identification of control objects (CO) and building the decision optimal classification rules in the diagnostic feature space. The non-linear dynamic models in the form of the Volterra multidimensional kernels are used as the diagnostic information source, which are identified according to the results of the experimental studies of the control objects “input-output”. The obtained with the help of simulation modeling results of studying the informativeness of the diagnostic features formed on the basis of the Volterra kernels allow to make a conclusion on the effective use of non-parameter dynamic models in the form of the Volterra series for diagnosing electric motors.

Author Biographies

Светлана Николаевна Григоренко, Odessa National Polytechnical University Shevchenko av., 1, Odessa, Ukraine, 65044

Engineer

Department of Computerized Control Systems

Сергей Витальевич Павленко, Odessa National Polytechnical University Shevchenko av., 1, Odessa, Ukraine, 65044

Engineer

Department of Informatics and Mathematical Methods of Information Systems Protection

Виталий Данилович Павленко, Odessa National Polytechnical University Shevchenko av., 1, Odessa, Ukraine, 65044

DSc, Professor

Department of Computerized Control Systems

Александр Алексеевич Фомин, Odessa National Polytechnical University Shevchenko av., 1, Odessa, Ukraine, 65044

PhD, Associate Professor

Department of Computerized Control Systems

References

  1. Korbicz, J., Kościelny, J. M. (2010). Modeling, Diagnostics and Process Control: Implementation in the DiaSter System. Berlin: Springer. (2010). [In English]
  2. Korbicz, J., Kościelny, J. M., Kowalczuk, Z., Cholewa, W. (2004). Fault Diagnosis: Models, Artificial Intelligence, Applications. Berlin: Springer. (2004). [In English]
  3. Katipamula, S., Brambley, M. R. (2005). Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems. A Review, Part I. HVAC&R RESEARCH, 11 (1), 3–25. [In English]
  4. Patton, R. J., Fantuzzi, C., Simani, S. (2003). Model–Based Fault Diagnosis in Dynamic Systems Using Identification Techniques. New York: Springer–Verlag, 368. [In English]
  5. Vladimirskij, A. A., Vladimirskij, I. A. (2007) Razrabotka sredstv tehnicheskoj diagnostiki. Jelektronnoe modelirovanie, 29 (1), 59–70. [In Russian]
  6. Pupkov, K. A., Egupov, N. D. (2004). Metody klassicheskoj i sovremennoj teorii avtomaticheskogo upravlenija. Statisticheskaja dinamika i identifikacija sistem avtomaticheskogo upravlenija: Uchebnik dlja VUZov. Moscow: Izd–vo MGTU im. N.Je. Baumana, 638. [In Russian]
  7. Doyle, F. J., Pearson, R. K., Ogunnaike, B. A. (2001). Identification and Control Using Volterra Models. Published Springer Technology & Industrial Arts, 314. [In English]
  8. Tu, Dzh., Gonsales, R. (1978). Principy raspoznavanija obrazov. Moscow: Mir, 411. [In Russian]
  9. Fukunaga, K. (1970). Vvedenie v statisticheskuju teoriju raspoznavanija obrazov. Mosocw: Nauka, 368. [In Russian]
  10. Dubrovin, V. I., Subbotin, S. A. (2002). Metody povyshenija jeffektivnosti procedur nejrosetevoj diagnostiki. Nejrokomp'jutery: razrabotka, primenenie, 3, 3–9. [In Russian]
  11. Radimov, I. N., Rymsha, V. V., Malevannyj, O. E. (2002). Modelirovanie rezhimov raboty ventil'nogo induktornogo dvigatelja. Elektrotehnіka і elektromehanіka, 2, 60–64. [In Russian]
  12. Miller, T. J. E. (1993). Switched Reluctance Motors and their Control. Magna Physics Publishing and Clarendon Oxford Press, 203.
  13. Pavlenko, V., Pavlenko, S., Speranskyy, V. (2014). Chapter 10: Identification of systems using Volterra model in time and frequency domain. In book: Advanced Data Acquisition and Intelligent Data Processing. V. Haasz and K. Madani (Eds.). River Publishers, 233–270. [In English]
  14. Pavlenko, V. D. (2010). Identifikacija nelinejnyh dinamicheskih sistem v vide jader Vol'terry na osnove dannyh izmerenij impul'snyh otklikov. Jelektronnoe modelirovanie, 32 (3), 3–18. [In Russian]
  15. Pavlenko, S. V. (2010). Primenenie vejvlet–fil'tracii v procedure identifikacii nelinejnyh sistem na osnove modelej Vol'terra. Eastern-eUropean Journal of Enterprise Techonoligies, 6/4 (48), 65–70. [In Russian]
  16. Pavlenko, V. D. (2008). Informacionnaja tehnologija kosvennogo kontrolja i diagnostiki dinamicheskih obektov na osnove modelej Vol'terra. Trudy Odessk. politehn. un–ta, Odessa, 2 (30), 194–199. [In Russian]
  17. Vitaliy, P., Oleksandr, F., Vladimir, I. (2009). Technology for data acquisition in diagnosis processes by means of the identification using Volterra models. 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. doi:10.1109/idaacs.2009.5342968 [in English]
  18. Pavlenko, V. D., Pavlenko, S. V., Il'in, V. M. (2011). Jeffektivnost' metodov izvlechenija diagnosticheskoj informacii iz dannyh identifikacii obektov kontrolja v vide jader Vol'terra. Elektrotehnіchnі ta komp´juternі sistemi, 04 (80), 154–161. [In Russian]
  19. Pavlenko, V., Fomin, A. (2008). Methods For Black–Box Diagnostics Using Volterra Kernels. ICIM 2008: Proceedings 2nd International Conference on Inductive Modelling, Kyiv, Ukraine, 104–107. [In English]
  20. Pavlenko, V. D., Fomin, A. A., Pavlenko, S. V., Il'in, V. M. (2008). Metod diagnostiki nepreryvnyh sistem na osnove modelej v vide jader Vol'terra. Modeljuvannja ta keruvannja stanom ekologo–ekonomіchnih sistem regіonu: Zbіrnik prac'. Kiїv:MNNCІTІS, 4, 180–191. [In Russian]
  21. Pavlenko, V. D., Pavlenko, S. V. (2001). Vychislitel'nyj intellekt i informacionnaja optimizacija sistem diagnostirovanija sostojanij nepreryvnyh obektov. Vychislitel'nyj intellekt (rezul'taty, problemy, perspektivy): Materialy 1–j Mezhdunarodnoj nauchno–tehnicheskoj konferencii. Cherkassy: Maklaut, 113–114. [In Russian]
  22. Fajnzil'berg, L. S. (2010). Matematicheskie metody ocenki poleznosti diagnosticheskih priznakov. Kiev: Osvita Ukrainy, 152. [In Russian]
  23. Pavlenko, V. D., Procyna, Z. P. (2006). Identifikacija v vide jader Vol'terra ventil'no–reaktivnogo dvigatelja dlja celej diagnostiki. Elektromashinobuduvannja ta elektroobladnannja. Tematichnij vipusk: Problemi avtomatizovanogo elektroprivodu. Teorіja і praktika: Mіzhvіdomchij n.–t. zb. Kiїv: Tehnіka, 66, 354–355. [In Russian]

Published

2014-07-24

How to Cite

Григоренко, С. Н., Павленко, С. В., Павленко, В. Д., & Фомин, А. А. (2014). Information technology of diagnostics of electric motor condition using Volterra models. Eastern-European Journal of Enterprise Technologies, 4(11(70), 38–43. https://doi.org/10.15587/1729-4061.2014.26310

Issue

Section

Mathematical and information support of computer-integrated control systems