Synthesis of active compensation system of spring oscillation in two–mass electromechanical object

Authors

  • Роман Сергеевич Волянский Dniprodzerzhynsk State Technical University, Str. Dniprobudivska, 2, Dniprodzerzhinsk, Ukraine, 51918, Ukraine https://orcid.org/0000-0001-5674-7646
  • Александр Валентинович Садовой Dniprodzerzhynsk State Technical University, Str. Dniprobudivska, 2, Dniprodzerzhinsk, Ukraine, 51918, Ukraine https://orcid.org/0000-0003-0347-6322

DOI:

https://doi.org/10.15587/1729-4061.2015.47178

Keywords:

relay-operated controller, interval calculations, spring oscillation compensation, variable gain

Abstract

The paper deals with the synthesis of the precision active compensation system of spring oscillation in the vehicle suspension. The main objective was to develop a method of synthesis of discontinuous control systems of complex dynamic objects, the dynamics of which is generally chaotic.

Using the feedback linearization principle for such systems allows to simplify the control object motion equations by eliminating zero dynamics components, and reduce the motion equations of the simplified object to the Brunovsky form. Unlike the classical feedback linearization, indicated conversions are performed automatically using a specially formed discontinuous control action, the amplitude of which depends on the control object state variables. In the synthesized control system, the controller, forming the control action, along with the considered dynamic object generates an internal motion speed control loop of the sprung mass in the vertical direction and is part of the outer position control loop. To improve the performance of the synthesized system, the position control algorithm has a non-linear switching line, which is determined from the conditions of achieving an aperiodic transient process in the system with variable gain. Using the proposed method is illustrated by the results of the numerical investigation of the synthesized control system. The above material can be useful for experts in the field of electromechanical automation systems and control systems of dynamic objects.

Author Biographies

Роман Сергеевич Волянский, Dniprodzerzhynsk State Technical University, Str. Dniprobudivska, 2, Dniprodzerzhinsk, Ukraine, 51918

PhD, Assistant Professor

Department of Electrotechnic and Electromechanic 

Александр Валентинович Садовой, Dniprodzerzhynsk State Technical University, Str. Dniprobudivska, 2, Dniprodzerzhinsk, Ukraine, 51918

DSc, Professor, Vice–rector of scientific work

References

  1. Akimov, L. V., Dolbnia, V. T., Klepikov, V. B., Pirozhok, A. V. (2002). Sintez uproschennyih struktur dvuhmassovyih elektroprivodov s nelineynoy nagruzkoy. Kharkov: NTU “KhPI”, 160.
  2. Klyuchev, V. I. (2001). Teoriya elektroprivoda. Moscow: Energoatomizdat, 704
  3. Bortsov, Yu. A., Sokolovskiy, G. G. (1992). Avtomatizirovannyiy elektroprivod s uprugimi svyazyami. St– Peterburg: Enegoatomizdat, 288.
  4. Burgin, B. Sh. (1992). Analiz i sintez dvuhmassovyih elektromehanicheskih sistem. Novosibirsk: Novosibirskiy ETI im. N. D. Psurtseva, 199.
  5. Boyes, W. (1994). Instrumentation Reference Book. Oxford: Butterworth–Heinemann Ltd, 929. doi:10.1016/B978-0-7506-8308-1.00057-7
  6. Smith, E. H. (1994). Mechanical engineer’s reference book. Oxford: Butterworth–Heinemann Ltd, 1194. doi:10.1016/b978-0-408-00083-3.50002-3
  7. Sadovoy, A. V., Suhinin, B. V., Sohina, Yu. V. (1998). Sistemy optimalnogo upravleniya pretsizionnymi elektroprivodami. Кyiv: ISIMO, 298.
  8. Conde, E. C., Carbajal, F. B., Rodríguez, C. G., Ortega, A. B. (2009). Sliding Mode based Differential Flatness Control and State Estimation of Vehicle Active Suspensions. Politecnología, Vol. 1, № 1 (1), 49–59.
  9. Aldair, A. A., Wang, W. J. (2011). The energy regeneration of Electromagnetic energy saving active Suspension in full vehicle with Neurofuzzy controller. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 2, № 2, 32–43. doi:10.5121/ijaia.2011.2203
  10. Gysen, L. J. B., Janssen, J. L. G., Paulides, J. J. H., Lomonova, E. A. (2009). Design Aspects of an Active Electromagnetic Suspension System for Automotive Applications. IEEE Transactions on Industry Applications, Vol. 45, № 5, 1589–1597. doi:10.1109/08ias.2008.181
  11. Emelyanov, S. V., Korovin, S. K. (1997). Novye tipy obratnoy svyazi. Мoscow: Nauka, 352.
  12. Bartolini, G., Pisano, A., Usai, E. (2009). On the second–order sliding mode control of nonlinear systems with uncertain control direction. Automatica, № 45, 2982–2985. doi:10.1016/j.automatica.2009.09.018
  13. Dolire, F. O., Salau, T. A. O. (2013). Control of Chaotic Oscillation and Response Charaterisation in Duffing Oscillator Using Vibration Absorber. Journal of Mechanical Engineering and Automation, Vol. 3, № 1, 1–7. doi:10.5923/j.jmea.20130301.01
  14. Sergienko, A. N. (2013). Matematicheskaya model kolebaniy v hodovoy sisteme avtomobilya s elektromagnitnyim dempfirovaniem. Vistnyk KhPI, 31 (1004), 86–93.
  15. Kim, D. P. (2004). Teoriya avtomaticheskogo upravleniya. Mnogomernye, nelineynye, optimalnye i adaptivnye sistemy. Мoscow: Fizmatlit, 464.
  16. Jaulin, L., Kieffer, M., Didrit, O., Walter, E. (2001). Applied interval analysis. London: Springer, 379. doi:10.1007/978-1-4471-0249-6_2
  17. Pupkov, K. A., Egupov, N. D. (2004). Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniia. Tom 5. Metody sovremennoi teorii avtomaticheskogo upravleniia. M.: MGTU im. N. E. Baumana, 783.

Published

2015-08-19

How to Cite

Волянский, Р. С., & Садовой, А. В. (2015). Synthesis of active compensation system of spring oscillation in two–mass electromechanical object. Eastern-European Journal of Enterprise Technologies, 4(7(76), 21–26. https://doi.org/10.15587/1729-4061.2015.47178

Issue

Section

Applied mechanics