Formation of fuzzy support system for decision-making on merchantability of rolling stock in its allocation

Authors

  • Денис Вікторович Ломотько Ukrainian State Academy of Railway Transport Feuerbacha 7, Kharkov, 61050, Ukraine https://orcid.org/0000-0002-7624-2925
  • Антон Олександрович Ковальов Ukrainian State Academy of Railway Transport Feuerbacha 7, Kharkov, 61050, Ukraine https://orcid.org/0000-0001-8546-3183
  • Оксана Володимирівна Ковальова Ukrainian State Academy of Railway Transport Feuerbacha 7, Kharkov, 61050,

DOI:

https://doi.org/10.15587/1729-4061.2015.54496

Keywords:

logistics technology, rolling stock, reallocation of cars, merchantability, decision support

Abstract

The paper proposes a scientific approach to solving the problem of forming the knowledge base and effective support system for decision-making by operational railway employees in the allocation of rolling stock depending on its merchantability.

Analysis of existing regulations has shown the lack of a clear and unambiguous definition of merchantability of the rolling stock in regulatory documents, so contentious issues arise between the carrier and the shipper, especially in the reallocation of the rolling stock for loading. In this regard, almost complete lack of the formalized selection technology of rolling stock for loading was revealed.

The results of solving the problem of merchantability assessment of the rolling stock allow to improve the quality of management decisions, primarily through the optimal use of internal resources, and the proposed solution methods based on fuzzy DSS can be used in conjunction with other control methods. It is important that the presented approach allows a more thorough merchantability assessment of the rolling stock by reducing the uncertainty of this matter in both regulatory, and technological terms. This issue is an integral part of the range of problems that arise when forming the system of logistics centers of Ukrainian railways.

Author Biographies

Денис Вікторович Ломотько, Ukrainian State Academy of Railway Transport Feuerbacha 7, Kharkov, 61050

Professor

Department of Transport Systems and Logistics

Антон Олександрович Ковальов, Ukrainian State Academy of Railway Transport Feuerbacha 7, Kharkov, 61050

Candidate of Technical Sciences, lecturer

The Department of Management of freight and commercial work

Оксана Володимирівна Ковальова, Ukrainian State Academy of Railway Transport Feuerbacha 7, Kharkov, 61050

Assistant

The Department of Management of freight and commercial work

References

  1. Pro zatverdzhennja Statutu zaliznyc' Ukrai'ny: Postanova Kabinetu Ministriv Ukrai'ny № 457 vid 06 kvitnja 1998. Available at: http://zakon1.rada.gov.ua/laws/show/457-98-%D0%BF.
  2. Roz’jasnennja prezydii' Vyshhogo gospodars'kogo sudu Ukrai'ny № 04-5/601 vid 29 kvitnja 2002. Available at: http://sudpraktika.in.ua/pro-deyaki-pitannya-praktiki-virishennyasporiv-shho-vinikayut-z-perevezennya-vantazhiv-zalizniceyu.
  3. Soglashenie o mezhdunarodnom zheleznodorozhnom gruzovom soobshhenii (SMGS). Vveden 01.07.2015. Available at: http://osjd.org/doco/public/ru.
  4. Lomot'ko, D. V. (2005). Pidvyshhennja efektyvnosti tehnologii' rozpodilu ruhomogo skladu na poligoni. Zbirnyk naukovyh prac' DonIIZT. Donec'k, 3.
  5. Lomot'ko, D. V., Arsenenko, D. V. (2015). Metodologyja formyrovanyja эffektyvnoj logystycheskoj tehnologyy perevozok v zheleznodorozhnom mezhgosudarstvennom soobshhenyy. Zaliznychnyj transport Ukrai'ny, 1, 11–17.
  6. Lomot'ko, D. V. (Ed.) (2014). Logisticheskoe upravlenie gruzo- i vagonopotokami. Trudy specialistov Ukrainskoj gosudarstvennoj akademii zheleznodorozhnogo transporta. Saarbrucken, Deutschland: Palmarium Academic Publishing, 105.
  7. Cebeci, U. (2009). Fuzzy AHP-based decision support system for selecting ERP systems in textile industry by using balanced scorecard. Expert Systems with Applications, 36 (5), 8900–8909. doi: 10.1016/j.eswa.2008.11.046
  8. Shavranskyy, V. (2012). Using fuzzy logic in support systems decision complications during drilling. Technology audit and production reserves, 4 (1 (6)), 35. Available at: http://journals.uran.ua/tarp/article/view/4782/4433
  9. Tymchuk, S. (2013). Definition of information uncertainty in power engineering. Technology audit and production reserves, 6 (5 (14)), 33–35. Available at: http://journals.uran.ua/tarp/article/view/19648/17296
  10. Du, L., Choi, K. K., Youn, B. D., Gorsich, D. (2006). Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data. Journal of Mechanical Design, 128 (4), 928–935. doi: 10.1115/1.2204972
  11. Kuo, R. J., Chen, C. H., Hwang, Y. C. (2001). An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets and Systems, 118 (1), 21–45. doi: 10.1016/S0165-0114(98)00399-6
  12. Li, D.-F. (2005). Multiattribute decision making models and methods using intuitionistic fuzzy sets. Journal of Computer and System Sciences, 70 (1), 73–85. doi: 10.1016/j.jcss.2004.06.002
  13. Szmidt, E., Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114 (3), 505–518. doi: 10.1016/S0165-0114(98)00244-9
  14. Demin, D. A. (2012). Synthesis of optimal temperature regulator of electroarc holding furnace bath. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 52–58.
  15. Hong, D. H., Lee, S., Do, H. Y. (2001). Fuzzy linear regression analysis for fuzzy input–output data using shape-preserving operations. Fuzzy Sets and Systems, 122 (3), 513–526. doi: 10.1016/S0165-0114(00)00003-8
  16. Yang, M.-S., Lin, T.-S. (2002). Fuzzy least-squares linear regression analysis for fuzzy input–output data. Fuzzy Sets and Systems, 126 (3), 389–399. doi: 10.1016/S0165-0114(01)00066-5
  17. Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: 10.1615/jautomatinfscien.v44.i7.40
  18. Kuts, A. M. (2015). Method of presentation of expert information by means of fuzzy logic and obtaining the group assessment of expert opinions. Technology Audit and Production Reserves, 2 (2 (22)), 17–21. doi: 10.15587/2312-8372.2015.40778
  19. Lomot'ko, D. V., Koval'ov, A. O., Koval'ova, O. V. (2013). Udoskonalennja funkcionuvannja avtomatyzovanoi' systemy rozpodilu transportnyh resursiv na Harkivs'kij dyrekcii' zaliznychnyh perevezen'. Zbirnyk naukovyh prac'. Kharkiv: UkrDAZT, 137, 5–10.
  20. Developers of Your Spreadsheet's Solver. Optimization Concepts (2002). Available at : http://www.frontsys.com.
  21. Kofman, A. (1982). Vvedenie v teoriju nechetkih mnozhestv. Moscow: Radio i svjaz', 432.
  22. Lomot'ko, D. V. (2007). Metod ocinky ta vidboru nechitkoi' informacii' pry formuvanni system pidtrymky pryjnjattja rishen' u pidrozdilah zaliznyc'. Informacijno-kerujuchi systemy na zaliznychnomu transporti, 2, 3–9.
  23. Kosko, B. (1992). Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ: Prentice Hall, 449.

Published

2015-12-24

How to Cite

Ломотько, Д. В., Ковальов, А. О., & Ковальова, О. В. (2015). Formation of fuzzy support system for decision-making on merchantability of rolling stock in its allocation. Eastern-European Journal of Enterprise Technologies, 6(3(78), 11–17. https://doi.org/10.15587/1729-4061.2015.54496

Issue

Section

Control processes