Using of modified symmetry principle of the structural schemes for automatic control systems synthesis

Authors

  • Олексій Іванович Шеремет Dneprodzerzhinsk State Technical University, Dneprostroevskaya str., 2, Dneprodzerzhinsk, Ukraine, 51918, Ukraine https://orcid.org/0000-0003-1298-3617
  • Олександр Валентинович Садовой Dneprodzerzhinsk State Technical University, Dneprostroevskaya str., 2, Dneprodzerzhinsk, Ukraine, 51918, Ukraine https://orcid.org/0000-0003-0347-6322

DOI:

https://doi.org/10.15587/1729-4061.2016.61146

Keywords:

inverse dynamic problems, modified symmetry principle, structural scheme symmetry

Abstract

The solution of inverse dynamic problems using the symmetry principle of structural schemes can be a basis for the synthesis of automatic control systems of technical objects. This approach requires compensation of the dynamic properties of the control object. Most scientific papers idealize the object, that is assume that its dynamic characteristics can be fully compensated by controllers. The impact of transfer functions of modifying links on dynamic and static characteristics of automatic control systems is also understudied.

The possibility of using methods for solving inverse dynamic problems for the synthesis of automatic control systems of technical objects is investigated. The mathematical modeling confirmed that ideal tracking of inputs under the full compensation of dynamic properties of the control object is impossible in real systems. The rules, which allow determining the inverse model of the control object directly by its structural scheme in the first canonical controllability form, without having to convert differential equations, are formulated.

The modified symmetry principle of the structural schemes, which lies in introducing the integrating link to a direct branch of the closed system, which is included consistently with the inverse model, and provides formation of achievable dynamic characteristics desired with a limited gain is developed.

Author Biographies

Олексій Іванович Шеремет, Dneprodzerzhinsk State Technical University, Dneprostroevskaya str., 2, Dneprodzerzhinsk, Ukraine, 51918

Candidate of Technical Sciences, Associate Professor

Department of electrical engineering and electromechanics

Олександр Валентинович Садовой, Dneprodzerzhinsk State Technical University, Dneprostroevskaya str., 2, Dneprodzerzhinsk, Ukraine, 51918

Doctor of Technical Sciences, Professor, Vice-Rector for Research

References

  1. Krut'ko, P. D. (1987). Obratnye zadachi dinamiki upravliaemyh sistem. Lineinye modeli. Moscow: Nauka, 304.
  2. Krut'ko, P. D. (1988). Obratnye zadachi dinamiki upravliaemyh sistem. Nelineinye modeli. Moscow: Nauka, 326.
  3. Krut'ko, P. D. (2004). Obratnye zadachi dinamiki v teorii avtomaticheskogo upravleniia. Tsikl lektsii. Moscow: Mashinostroenie, 576.
  4. Velishchanskii, M. A., Krishchenko, A. P., Tkachev, S. B. (2003). Sintez algoritmov pereorientatsii kosmicheskogo apparata na osnove kontseptsii obratnoi zadachi dinamiki. Izvestiia RAN. Teoriia i sistemy upravleniia, № 5, 156–163.
  5. Lavrov, N. G., Strashinin, E. E., Shalimov, L. N. (2009). Primenenie kontseptsii obratnyh zadach dinamiki k probleme upravleniia uglovym dvizheniem spuskaemogo apparata. Vestnik YuUrGU, № 26, 4–9.
  6. Yuan, Ch., Guifu, M., Guangying, M., Shuxia, L., Jun, G. (2014). Robust Adaptive Inverse Dynamics Control for Uncertain Robot Manipulator. International Journal of Innovative Computing, Information and Control, Vol. 10, № 2, 575–587.
  7. Ghavifekr, A. A., Badamchizadeh, M. A., Alizadeh, G., Arjmandi, A. (2013, May). Designing inverse dynamic controller with integral action for motion planning of surgical robot in the presence of bounded disturbances. 2013 21st Iranian Conference on Electrical Engineering (ICEE). Institute of Electrical & Electronics Engineers (IEEE), 1–6. doi:10.1109/iraniancee.2013.6599773
  8. Meysar, Z., Leila, N. (2010). Fuzzy logic-based inverse dynamic modelling of robot manipulators. Transactions of the Canadian Society for Mechanical Engineering, Vol. 34, № 1, 137–150.
  9. Freeman, R. A., Kokotovic, P. V. (1996, July). Inverse Optimality in Robust Stabilization. SIAM Journal on Control and Optimization, Vol. 34, № 4, 1365–1391. doi:10.1137/s0363012993258732
  10. Pukdeboon, C. (2015, February 13). Inverse optimal sliding mode control of spacecraft with coupled translation and attitude dynamics. International Journal of Systems Science, Vol. 46, № 13, 2421–2438. doi:10.1080/00207721.2015.1011251
  11. Lasserre, J. B. (2013, August). Inverse Polynomial Optimization. Mathematics of Operations Research, Vol. 38, № 3, 418–436. doi:10.1287/moor.1120.0578
  12. Kolesnikov, A. A., Chirchenkov, A. G., Bessarabov, M. V. (1986). Analiticheskoe konstruirovanie agregirovannyh reguliatorov i obratnye zadachi dinamiki upravliaemyh sistem. Sintez algoritmov slozhnyh sistem, Vol. 6, 3–6.
  13. Sadovoy, A. V., Suhinin, B. V., Sohina, Yu. V.; In: Sadovoy, A. V. (1996). Sistemy optimal'nogo upravleniia pretsizionnymi elektroprivodami. Kyiv: ISIMO, 298.
  14. Sadovoy, A. V., Suhinin, B. V., Sohina, Yu. V., Derets, A. L.; In: Sadovoy, A. V. (2011). Releinye sistemy optimal'nogo upravleniia elektroprivodami. Dneprodzerzhinsk: DGTU, 337.
  15. Sadovoy, A. V., Volianskii, R. S. (2011). Sintez optimal'noi sistemy upravleniia s polinomial'noi liniei perekliucheniia. Elektrotehnicheskie i komp'iuternye sistemy, № 3, 23–24.
  16. Sheremet, O. I., Sadovoy, O. V., Sokhina, Yu. V. (2014). Poniattia dyskretnoho chasovoho ekvalaizera. Zbirnyk naukovykh prats Donbaskoho derzhavnoho tekhnichnoho universytetu, Vol. 1, 147–151.

Published

2016-02-27

How to Cite

Шеремет, О. І., & Садовой, О. В. (2016). Using of modified symmetry principle of the structural schemes for automatic control systems synthesis. Eastern-European Journal of Enterprise Technologies, 1(9(79), 48–56. https://doi.org/10.15587/1729-4061.2016.61146

Issue

Section

Information and controlling system