Theoretical and experimental research into manufacturing of silicate products without thermal treatment

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.79465

Keywords:

silicate brick, enthalpy of reactions, calcium oxide, calcium hydroxide, activation, energy­saving

Abstract

We conducted thermodynamic studies of creation of the compounds of calcium hydrosilicates. The comparison was performed of the use of calcium hydroxide and calcium oxide in the calcium­silicate mixture. It is demonstrated that the higher thermodynamic probability of reaction is characteristic for calcium oxide. The values of enthalpy of reaction with calcium oxide were examined. Reaction with calcium oxide has an exothermic character. The use of calcium hydroxide leads to the endothermic nature of reaction. The effect of mechanical activation and chemical activation on strength of the samples of silicate brick is confirmed. The joint action of these types of activation is more effective. The occurrence of a synergetic effect with the joint action on the mixture of mechanical and chemical activation is shown. It was established that the joint action of mechanical and chemical activation creates conditions for reactions of the creation of calcium hydrosilicates without an autoclave. This is important since this makes it possible to create more energy­efficient technologies for silicate building articles.

Author Biographies

Varvara Vinnichenko, Kharkiv National University of Civil Engineering and Architecture Sumskaya str., 40, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of mechanization of construction processes

Alexander Krot, Kharkiv National University of Construction and Architecture Sumskaya str., 40, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of mechanization of construction processes

Natalia Vitsenko, Prydniprovska State Academy of Civil Engineering and Architecture Chernyshevskogo str., 24a, Dnepr, Ukraine, 49600

PhD, Senior Researcher

Department of Technology of building materials, products and structures

References

  1. Erdmenger, L. Tonindustrie Zeitung. Available at: https://ia600204.us.archive.org/12/items/tonindustriezeit5188unse/tonindustriezeit5188unse.pdf
  2. Shabanova, G. N., Kiseleva, S. A., Shabanov, D. N. (2012). Intensification of Phase Formation in the CaO – SiO2 – H2O System. 18 International Baustofftagung, 1248–1253.
  3. Shinkevich, E., Lutskin, E., Tchesskii, Yu., Bondarenko, G. (2005). Researches and mathematic modelling structure and properties of cellular silicate composition: Proc. of the 2nd International Symposium Non-Traditional Cement & Concrete, 148–153.
  4. Shinkevich, E., Lutskin, Y. (2007). The Influence of Structure Modification of Silicate Materials after Hardening in Non-autoclave Conditions on Their Coefficient of Heat Conductivity. Proceeding of International Conference “Alkali Activated Materials – Research, Production and Utilization”, 621–635.
  5. Hien, T. T. T., Shirai, T., Fuji, M. (2012). Mechanical modification of silica powders. Journal of the Ceramic Society of Japan, 120 (1406), 429–435. doi: 10.2109/jcersj2.120.429
  6. Roelfstra, P. E., Sadouki, H., Wittman, H. (1985). Le beton numerique. Material Structure, 18, 327–335. Available at: https://www.researchgate.net/publication/225518224_Le_beton_numerique doi: 10.1007/bf02472402
  7. Kubátová, D., Boháč, M., Nečas, R. (2016). The Effect of Mechanical Activation of Lime Putty on Properties of the Autoclaved Calcium Hydrosilicate Materials. Procedia Engineering, 151, 18–25. doi: 10.1016/j.proeng.2016.07.352
  8. Hint, J. (1971). Uber den Wirkungsgrad der mechanischen Aktivierung. Einige Ergebnisse der Aktivierung von Feststoffen mittels grosser mechanischen Energien. Zeitschrift “Aufbereitungs-Technik”, 2, 3–10.
  9. Khomchenko, Yu. V., Barbanyagre, V. D. (2006). Mekhanoaktivatsiya izvestkovo-kremnezemistogo vyazhushchego dlya materialov avtoklavnogo tverdeniya. Stroitel'noye materialovedeniye - teoriya i praktika, 153–154.
  10. Avvakumov, E. G., Senna, M., Kosova, N. V. (2001). Soft mechanochemical synthesis. A basis for new chemical technologies. Kluwer Academic Publishers, 216.
  11. Krot, O. Yu. (2013). Naukoví osnovi stvorennya obladnannya dlya mekhaníchnoi aktivatsii ta presuvannya budível'nikh sumíshey. Kharkívs'kiy natsíonal'niy uníversitet budívnitstva ta arkhítekturi, 36.
  12. Krot, A. Yu., Supryaga, D. V., Chigrin, D. G. (2016). Analiticheskoye modelirovaniye kolebaniy rabochikh organov barabanno-valkovoy pererabatyvayushchey mashiny. Materialy, oborudovaniye i resursosberegayushchiye tekhnologii, 381.
  13. Smirnov, I. V. (1950). Prigotovleniye i primeneniye v stroitel'stve molotoy negashenoy izvesti. Moscow: Pravda, 127.
  14. Mtschedlov-Petrosyana, O. P., Babuschkin, W. I. (1958). Uber umirayut thermodynamische Untersuchung der Festkorperreaktionen v Silikat Systemen. Silicattechnik, Berlin Verl. Technik, 9, 209–212.
  15. Babushkin, V. I., Matveyev, G. M., Mchedlov-Petrosyan, O. P. (1972). Termodinamika silikatov. Moscow: Stroyizdat, 352.
  16. Ruzhinskiy, S. I. Vneshniye mekhanicheskiye vozdeystviya v tekhnologii betonov. Available at: http://www.ibeton.ru/a156.php
  17. Plugin, A. N., Plugin, A. A., Vinnichenko, V. I., Vitsenko, N. Yu. (2012). Issledovaniya silikatnogo kirpicha, izgotovlennogo s primeneniyem avtoklavnoy obrabotki i bez podvoda teplovoy energii izvne metodami fiziko-khimicheskogo analiza. Naukoviy vísnik budívnitstva, 67, 153–159.
  18. Plugin, A. N., Plugin, A. A., Vinnichenko, V. I., Vitsenko, N. Yu. (2012). Elektronno-mikroskopicheskiye issledovaniya silikatnogo kirpicha, poluchennogo pri avtoklavnoy obrabotke i po energosberegayushchey tekhnologii. Naukoviy vísnik budívnitstva, 67, 224–229.

Downloads

Published

2016-10-30

How to Cite

Vinnichenko, V., Krot, A., & Vitsenko, N. (2016). Theoretical and experimental research into manufacturing of silicate products without thermal treatment. Eastern-European Journal of Enterprise Technologies, 5(6 (83), 29–36. https://doi.org/10.15587/1729-4061.2016.79465

Issue

Section

Technology organic and inorganic substances