Influence of surface active substances on the intensification of extraction when changing hydrodynamic indices of the technology of organopreparations

Authors

  • Maria Paska Lviv National University of Veterinary Medicine and Biotechnology named after S. Z. Gzhytskyj Pekarska str., 50, Lviv, Ukraine, 79010, Ukraine https://orcid.org/0000-0002-9208-1092
  • Uliana Drachuk Lviv National University of Veterinary Medicine and Biotechnology named after S. Z. Gzhytskyj Pekarska str., 50, Lviv, Ukraine, 79010, Ukraine
  • Bohdan Halukh Lviv National University of Veterinary Medicine and Biotechnology named after S. Z. Gzhytskyj Pekarska str., 50, Lviv, Ukraine, 79010, Ukraine https://orcid.org/0000-0002-7824-4983
  • Iryna Basarab Lviv National University of Veterinary Medicine and Biotechnology named after S. Z. Gzhytskyj Pekarska str., 50, Lviv, Ukraine, 79010, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.84350

Keywords:

extractant, coefficient of surface tension, mean thickness of surface laminar layer, surface number

Abstract

An influence of surface-active substances (SAS) on the change of physical characteristics of extractants of the group of organic preparations (chonsorid, heparin, and ronidase) was studied. Authors established rational concentrations of SAS in extractants, at which the minimum of coefficient of surface tension and the decrease in coefficient of dynamic viscosity are reached. For the solution of extractant of chonsurid – SAS butanol in the concentration of 0,05–0,06 % by weight, of heparin – butanol in the concentration of 0,5–0,6 % by weight, of ronidase – butanol in the concentration of 0,45–0,6 % by weight.

Mean values of a near–surface laminar layer were established with the help of theoretical calculations, namely: for heparin – 1 mm, for chonsurid – 3 mm, for ronidase – 1 mm. Kinetics of extracting demonstrated an increase in the amount of the mass of extract when using extractants with SAS: for chonsurid – by 1,4 times, for heparin – by 1,7 times, for ronidase – by 1,9 times. Mathematical calculations proved a change in the similarity numbers under the influence of the surfactants, the Archimedean, Euler and Reynolds numbers were calculated and their values were compared. The Archimedean number changes its value for the extractants of chonsurid from 1028 to 10028, for those of heparin – from 3463 to 5910, for those of ronidase – from 990 to 6236. The value of the Reynolds number changes with the use of industrial extractants and the proposed extractants with the addition of SAS for chonsurid – from 18,6 to 91,6, for heparin – from 34,8 to 265, for ronidase – from 17,5 to 65,1. The Euler number with the use of industrial extractants for chonsurid is 170, for heparin – 92,2, for ronidase – 69,9, and when using the proposed extractants with the addition of SAS, it is: 37,5; 11,3; 12, respectively.

Authors assessed hydrodynamic situation on the border of the contact “solid body – liquid” using the ratio of forces of surface tension to inertial forces on the basis of dimensionless set – surface number. Surface number changes its value when using industrial extractants and the proposed extractants with the addition of SAS for chonsurid from 2295 to 2164, for heparin from 530 to 346, for ronidase from 4641 to 197.

The expediency of applying surface number was proved.

Author Biographies

Maria Paska, Lviv National University of Veterinary Medicine and Biotechnology named after S. Z. Gzhytskyj Pekarska str., 50, Lviv, Ukraine, 79010

Doctor of Veterinary Sciences, Professor, Head of Department

Department of meat processing meat and oil and fat products

Uliana Drachuk, Lviv National University of Veterinary Medicine and Biotechnology named after S. Z. Gzhytskyj Pekarska str., 50, Lviv, Ukraine, 79010

PhD, Senior Lecturer

Department of meat processing, meat and oil and fat products

Bohdan Halukh, Lviv National University of Veterinary Medicine and Biotechnology named after S. Z. Gzhytskyj Pekarska str., 50, Lviv, Ukraine, 79010

PhD, Senior Lecturer

Department of meat processing, meat and oil and fat products

Iryna Basarab, Lviv National University of Veterinary Medicine and Biotechnology named after S. Z. Gzhytskyj Pekarska str., 50, Lviv, Ukraine, 79010

PhD, Senior Lecturer

Department of meat proctssing, meat and oil and fat products

References

  1. Vragov, A. P. (2007). Massoobmennye processy i oborudovanie himicheskih i gazoneftepererabatyvajushhih proizvodstv. Sumy: izd-vo SumGU, 254.
  2. Bilonoga, Ju. L., Drachuk, U. R. (2009). Ekstraguvannja geparynu iz vykorystannjam psevdozridzhenogo sharu u gravitacijnomu ekstraktori ta optymizacija parametriv podribnennja syrovyny. Naukovyj visnyk LNUVM ta BT imeni S. Z. Gzhyc'kogo, 11 (2 (41)), 10–14.
  3. Zavialov, V., Misyura, T., Malezhik, I., Bodrov, V., Zaporozhets, Y., Popova, N., Lobok, O. (2014). Justification of the influence of low-frequency mechanical vibrations on the intensification of the process of extraction of desired components from plant raw materials. Modern technologies, in the food industry-2014 (MTFI – 2014), 120–128.
  4. Gumnyc'kyj, Ja. M., Sen'kiv, V. M. (2006). Vplyv umov periodychnogo vakuumunuvannja systemy na ekstraguvannja z tverdoi' fazy. Naukovi praci ONAHT, 2 (28), 284–285.
  5. Bilonoga, Ju. L., Bilonoga, D. M., Varyvoda, Ju. Ju. (2001). Dejaki aspekty energozberezhennja pry vyrobnyctvi insulin. Naukovyj visnyk LDAVM imeni S. Z. Gzhyc'kogo, 3 (3), 217–220.
  6. Dekans'kyj, V. Je., Zavjalov, V. L., Mysjura, T. G., Popova, N. V. (2015). Klasyfikacija ekstrakcijnoi' aparatury periodychnoi' dii' z kolyval'nym efektom robochogo seredovyshha. Vibracii' v tehnyci ta tehnologijah, 3, 129–132.
  7. Burdo, O. G., Rjashko, G. M. (2007). Jekstragirovanie v sisteme kofe – voda. Odesa, 175.
  8. Mal'ovanyj, M. S., Djachok, V. V. (2008). Osoblyvosti kinetyky ekstraguvannja iz tverdyh til klitynnoi' budovy. Naukovi praci ONAHT, 32, 12–16.
  9. Mashkovskij, M. D. (2001). Lekarstvennye sredstva. Vol. 1. Moscow: Novaja volna, 501.
  10. Zabot, G. L., Moraes, M. N., Carvalho, P. I. N., Meireles, M. A. A. (2015). New proposal for extracting rosemary compounds: Process intensification and economic evaluation. Industrial Crops and Products, 77, 758–771. doi: 10.1016/j.indcrop.2015.09.053
  11. Bahrami, M., Ranjbarian, S. (2007). Production of micro- and nano-composite particles by supercritical carbon dioxide. The Journal of Supercritical Fluids, 40 (2), 263–283. doi: 10.1016/j.supflu.2006.05.006
  12. Hajrutdinov, V. F., Gabitov, F. R., Gumerov, F. M., Husnutdinov, P. R. (2009). Poluchenie nanochastic polistirola s ispol'zovaniem sposoba sverhkriticheskogo antirastvoritelja. Vestnik Kazanskogo tehnologicheskogo universiteta, 2, 130–136.
  13. Yeo, S.-D., Kiran, E. (2005). Formation of polymer particles with supercritical fluids: A review. The Journal of Supercritical Fluids, 34 (3), 287–308. doi: 10.1016/j.supflu.2004.10.006
  14. Jung, J., Perrut, M. (2001). Particle design using supercritical fluids: Literature and patent survey. The Journal of Supercritical Fluids, 20 (3), 179–219. doi: 10.1016/s0896-8446(01)00064-x
  15. Sydorov, Ju. I., Gubyc'ka, I. I., Konechna, R. T., Novikov, V. P. (2008). Ekstrakcija roslynnoi' syrovyny. Lviv, 334.
  16. Bilonoga, Ju. L., Drachuk, U. R. (2009). Shljahy energozberezhennja iz vykorystannjam poverhnevo-aktyvnyh rechovyn (PAR) pry ekstraguvanni geparynu u psevdozridzhenomu stani. Integrovani tehnologii' ta energozberezhennja, 2, 8–13.
  17. Bilonoga, Ju. L., Varyvoda, Ju. Ju., Drachuk, U. R. (2008). Optymal'ni parametry prohodzhennja dyfuzijnyh procesiv pry ekstraguvanni honsurydu. Naukovyj visnyk LNUVM ta BT imeni S. Z. Gzhyc'kogo, 10 (4 (39)), 9–13.
  18. Bilonoga, Ju. L., Drachuk, U. R. (2010). Zastosuvannjam u rozchyni ekstragenta (PAR) pry vyrobnyctvi ronidazy. Progresyvni tehnika ta tehnologii' harchovyh vyrobnyctv restorannogo gospodarstva i torgivli, 2 (12), 156–160.
  19. Bilonoga, Ju. L. (2006). Pro docil'nist' rozgljadu gidromehanichnyh procesiv z urahuvannjam syly prypoverhnevogo natjagu na granyci kontaktu tverde tilo-ridyna. Integrovani tehnologii' ta energozberezhennja, 2, 56–64.
  20. Shhukin, E. D. (1992). Koloi'dna himija. Moscow: Vyshha shkola, 289.
  21. Bilonoga, Ju. L., Varyvoda, Ju. Ju., Drachuk, U. R. (2008). Sposib intensyfikacii' ekstraguvannja honsurydu z zastosuvannjam poverhnevo – aktyvnyh rechovyn. Naukovyj visnyk LNUVM ta BT imeni S. Z. Gzhyc'kogo, 10 (2 (37)), 14–18.
  22. Reshetnjak, O. V., Ukrai'nec', A. M., Zakordons'kyj, V. P. et. al. (2005). Termohimija. Fazova ta himichna rivnovaga. Budova rechovyny. Lviv: Vydavnychyj centr LNU im. I. Franka, 201.
  23. Bilonoga, Ju. L., Varyvoda, Ju. Ju., Drachuk, U. R. (2008). Optymal'ni parametry prohodzhennja dyfuzijnyh procesiv pry ekstraguvanni honsurydu. Naukovyj visnyk LNUVM ta BT imeni S. Z. Gzhyc'kogo, 10/4 (39), 9–13.
  24. Bilonoga, Ju. L., Drachuk, U. R. (2010). Intensyfikacija ekstraguvannja ronidazy iz zastosuvannjam poverhnevo – aktyvnyh rechovyn (PAR). Integrovani tehnologii' ta energozberezhennja, 3, 111–116.
  25. Paska, M., Zhuk, O. (2015). Using innovative equipment Fryma Koruma MaxxD in the production of mayonnaise. Eastern-European Journal of Enterprise Technologies, 2 (10 (74)), 58–65. doi: 10.15587/1729-4061.2015.41578

Downloads

Published

2016-12-20

How to Cite

Paska, M., Drachuk, U., Halukh, B., & Basarab, I. (2016). Influence of surface active substances on the intensification of extraction when changing hydrodynamic indices of the technology of organopreparations. Eastern-European Journal of Enterprise Technologies, 6(6 (84), 4–13. https://doi.org/10.15587/1729-4061.2016.84350

Issue

Section

Technology organic and inorganic substances