Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.85847

Keywords:

ecological safety, nanomaterials, porous indium phosphide, life cycle

Abstract

Recommendations for conducting ecological evaluation of nanomaterials are prepared. It is necessary to exercise control in order to establish effect of nanoproducts on the environment and human health for safe and productive use of nanotechnology. A general procedure for the system of nanosafety and certification of nanoindustry product should be based on creating standardizing, legislative and methodological support of safety system in the process of production, handling and disposal of nanomaterials. It was found that in order to perform assessment, nanoproducts should be examined at all stages of the life cycle. A scheme of the life cycle of nanomaterials was developed, which should be considered as a multi-stage process from the preparation of the source material to the reclamation. According to the methods proposed and recommendations developed, ecological assessment of porous indium phosphide and the device based on it, indium nitride, was performed. Nanostructures are investigated using the methods of scanning electronic microscopy, chemical analysis, the method of average projected diameter, gravimetric method, etc. It was found that porous indium phosphide may be health hazardous. Porous indium phosphide is formed by the method of electrochemical etching in the solutions of acids. Such methods of synthesis of nanostructures pose an ecological threat. Understanding these threats will optimize the processes of formation and operation of nanomaterials for ecological safety and will highlight the key moments of safe usage and disposal of products of nanotechnology.

Author Biographies

Sergij Vambol, National University Of Civil Protection of Ukraine Chernishevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor, Head of Department

Department of applied mechanics

Viola Vambol, National University Of Civil Protection of Ukraine Chernishevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of Labour Protection and Technogenic and Ecological Safety

Yana Sychikova, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Ukraine, 71100

PhD, Associate Professor

Department of Vocational Education

Natalya Deyneko, National University Of Civil Protection of Ukraine Chernishevska str., 94, Kharkiv, Ukraine, 61023

PhD

Scientific department of civil protection issues and man-caused environmental safety Research Center

References

  1. Kovtun, G. P., Veryovkin, A. A. (2010). Nanomaterials: technology and Materials: A Review. Kharkiv: KIPT, 73.
  2. Nanotechnology patents in USPTO (Patent). StatNano. Available at: http://statnano.com/report/s103
  3. Khrypunov, G., Vambol, S., Deyneko, N., Sychikova, Y. (2016). Increasing the efficiency of film solar cells based on cadmium telluride. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 12–18. doi: 10.15587/1729-4061.2016.85617
  4. Suchikova, Y. (2016). Provision of environmental safety through the use of porous semiconductors for solar energy sector. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 26–33. doi: 10.15587/1729-4061.2016.85848
  5. Bremus-Koebberling, E. A., Beckemper, S., Koch, B., Gillner, A. (2012). Nano structures via laser interference patterning for guided cell growth of neuronal cells. Journal of Laser Applications, 24 (4), 042013. doi: 10.2351/1.4730804
  6. Beckemper, S. (2011). Generation of Periodic Micro- and Nano-structures by Parameter-Controlled Three-beam Laser Interference Technique. Journal of Laser Micro/Nanoengineering, 6 (1), 49–53. doi: 10.2961/jlmn.2011.01.0011
  7. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2011). Influence of dislocations on the process of pore formation in n-InP (111) single crystals. Semiconductors, 45 (1), 121–124. doi: 10.1134/s1063782611010192
  8. Trifonova, T. A., Shirkin, L. A. (2009). Environmental safety of nanoparticles, nanomaterials and nanotechnologies. Vladimir: Publishing House of Vlad. state. University, 64.
  9. American Society for Testing and Materials – ASTM. Available at: http://www.astm.org/
  10. Antsiferova, I. V., Makarova, E. N. (2013). Рroduction methods of nanomaterials and the potential environmental risks. Herald PNIPU. Machinery, Materials, 15 (4), 59–67.
  11. Rajendran, V. (2009). Development of Nanomaterials from Natural Resources for Various Industrial Applications. Advanced Materials Research, 67, 71–76. doi: 10.4028/www.scientific.net/amr.67.71
  12. Jones, R. (2007). Are natural resources a curse? Nature Nanotechnology, 2 (11), 665–666. doi: 10.1038/nnano.2007.351
  13. Efros, A. L., Nesbitt, D. J. (2016). Origin and control of blinking in quantum dots. Nature Nanotechnology, 11 (8), 661–671. doi: 10.1038/nnano.2016.140
  14. Weidman, M. C., Beck, M. E., Hoffman, R. S., Prins, F., Tisdale, W. A. (2014). Monodisperse, Air-Stable PbS NanocrystalsviaPrecursor Stoichiometry Control. ACS Nano, 8 (6), 6363–6371. doi: 10.1021/nn5018654
  15. Wu, S., Wang, P., Xiao, C., Li, Z., Yang, B., Fu, J. et. al. (2016). A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation. Scientific Reports, 6, 31379. doi: 10.1038/srep31379
  16. Zhou, C., Yang, Z., Liu, D. (2012). Reversible Regulation of Protein Binding Affinity by a DNA Machine. Journal of the American Chemical Society, 134 (3), 1416–1418. doi: 10.1021/ja209590u
  17. Sengul, H., Theis, T. L., Ghosh, S. (2008). Toward Sustainable Nanoproducts. Journal of Industrial Ecology, 12 (3), 329–359. doi: 10.1111/j.1530-9290.2008.00046.x
  18. Meyer, D. E., Curran, M. A., Gonzalez, M. A. (2009). An Examination of Existing Data for the Industrial Manufacture and Use of Nanocomponents and Their Role in the Life Cycle Impact of Nanoproducts. Environmental Science & Technology, 43 (5), 1256–1263. doi: 10.1021/es8023258
  19. Dhingra, R., Naidu, S., Upreti, G., Sawhney, R. (2010). Sustainable Nanotechnology: Through Green Methods and Life-Cycle Thinking. Sustainability, 2 (10), 3323–3338. doi: 10.3390/su2103323
  20. Theis, T. L., Bakshi, B. R., Durham, D., Fthenakis, V. M., Gutowski, T. G., Isaacs, J. A. et. al. (2011). A life cycle framework for the investigation of environmentally benign nanoparticles and products. Physica Status Solidi (RRL) – Rapid Research Letters, 5 (9), 312–317. doi: 10.1002/pssr.201105083
  21. Seager, T. P., Linkov, I. (2008). Coupling Multicriteria Decision Analysis and Life Cycle Assessment for Nanomaterials. Journal of Industrial Ecology, 12 (3), 282–285. doi: 10.1111/j.1530-9290.2008.00048.x
  22. Sparvoli, M., Mansano, R. D., Chubaci, J. F. D. (2013). Study of indium nitride and indium oxynitride band gaps. Materials Research, 16 (4), 850–852. doi: 10.1590/s1516-14392013005000063
  23. Indium phosphide. U. S. National Library of Medicine. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/indium_phosphide#section=2D-Structure
  24. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Preparation of nanoporous n-InP (100) layers by electrochemical etching in HCI solution. Functional Materials, 17 (1), 131–134.
  25. Sychikova, Y. A., Kidalov, V. V., Sukach, G. A. (2013). Dependence of the threshold voltage in indium-phosphide pore formation on the electrolyte composition. Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 7 (4), 626–630. doi: 10.1134/s1027451013030130
  26. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Influence of the carrier concentration of indium phosphide on the porous layer formation. Journal of Nano- and Electronic Physics, 2 (4), 142–147.
  27. Liu, Y., Chen, J., Teplyakov, A. V. (2012). Chemical Passivation Processes for Biofunctionalization Schemes on Semiconductor Surfaces. Langmuir, 28 (44), 15521–15528. doi: 10.1021/la302819j
  28. Bessolov, V. N., Lebedev, M. V. (1998). Chalcogenide passivation of III–V semiconductor surfaces. Semiconductors, 32 (11), 1141–1156. doi: 10.1134/1.1187580
  29. Suchikova, Y. A. (2015). Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide. Journal of Nano- and Electronic Physics, 7 (3), 03017-1–03017-3.
  30. Indium Nitride (InN) Semiconductors. AZoM. Available at: http://www.azom.com/article.aspx?ArticleID=8367
  31. Sato, T., Zhang, X., Ito, K., Matsumoto, S., Kumazaki, Y. (2016). Electrochemical formation of N-type GaN and N-type InP porous structures for chemical sensor applications. 2016 IEEE SENSORS. doi: 10.1109/icsens.2016.7808443
  32. Suchikova, Y. A., Kidalov, V. V., Konovalenko, A. A., Sukach, G. A. (2011). Usage of porous indium phosphide as substrate for indium nitride films. ECS Transactions, 33 (38), 73–77. doi: 10.1149/1.3583516
  33. Suchikova, Y. A., Kidalov, V. V., Konovalenko, A. A., Sukach, G. A. (2010). Blue shift of photoluminescence spectrum of porous InP. ECS Transactions, 25 (24), 59–64. doi: 10.1149/1.3316113
  34. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2009). Effect of the type of electrolyte ànion on the porous InP morphology obtained by the electrochemical etching. Journal of Nano- and Electronic Physics, 1 (4), 111–118.
  35. Singh, P., Tan, C. M. (2016). Degradation Physics of High Power LEDs in Outdoor Environment and the Role of Phosphor in the degradation process. Scientific Reports, 6, 24052. doi: 10.1038/srep24052
  36. Tan, C. M., Singh, P. (2014). Time Evolution Degradation Physics in High Power White LEDs Under High Temperature-Humidity Conditions. IEEE Transactions on Device and Materials Reliability, 14 (2), 742–750. doi: 10.1109/tdmr.2014.2318725
  37. Amoabediny, G. H., Naderi, A., Malakootikhah, J., Koohi, M. K., Mortazavi, S. A., Naderi, M., Rashedi, H. (2009). Guidelines for safe handling, use and disposal of nanoparticles. Journal of Physics: Conference Series, 170, 012037. doi: 10.1088/1742-6596/170/1/012037

Downloads

Published

2017-02-28

How to Cite

Vambol, S., Vambol, V., Sychikova, Y., & Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1(10 (85), 27–36. https://doi.org/10.15587/1729-4061.2017.85847