Development of projection technique for determining the non-chaotic oscillation trajectories in the conservative pendulum systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.95764

Keywords:

pendulum systems, conservative systems, integral curves, phase trajectories, projection focusing

Abstract

We developed a technique to determine the non-chaotic oscillations of loads in the conservative pendulum systems by using the graphic technology of projection focusing. In this case, phase trajectories of the differential equations of oscillation are considered as projections of integral curves from the phase space onto the phase plane. The effect exerted by the value of one of the system's parameters on the image of phase trajectories was examined (at stable values of other parameters). By using projection focusing, the element that defines the critical value of variable parameter is selected among a family of phase trajectories, which, in a combination with other parameters, allows us to describe a non-chaotic trajectory in the load motion.

The need for such studies is predetermined by the absence, in practice, of an engineering method for computing the non-chaotic trajectory of the load motion for a certain pendulum system.

We proposed the notion of a focus-line of the parametric family of curves and the technique of projection focusing, which is based on it. We constructed integral curves in the phase space based on the numerical solution of second order Lagrange differential equations. A procedure is presented to determine the critical value of pendulum oscillation parameter by using the graphic notion of projection focusing of phase trajectories in the solutions of second order Lagrange differential equations. The examples are presented of determining the parameters of certain pendulums, which would provide for the non-chaotic trajectory of the load oscillations.

The developed computerized projection technique for the simulation of oscillations in the pendulum mechanical systems makes it possible to choose the required values of parameters and initial conditions for initiating the oscillations, which provide for the non-chaotic technological character of oscillation trajectory of their elements, which is important for the practical implementation in the designs of pendulum systems. 

Author Biographies

Oleg Semkiv, National University of Civil Defense of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

PhD, Vice-Rector

Olga Shoman, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Geometrical Modeling and Computer Graphics 

Elena Sukharkova, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Assistant

Department of Descriptive Geometry and Computer Graphics 

Alla Zhurilo, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Geometrical Modeling and Computer Graphics 

Hanna Fedchenko, National Technical University "Kharkiv Polytechnic Institute" Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Geometrical Modeling and Computer Graphics 

References

  1. Nedel'ko, N. S. (2010). Ispol'zovanie teorii katastrof k analizu povedeniya ehkonomicheskih system. Vestnik MGTU, 13 (1), 223–227.
  2. Ostrejkovskij, V. A. (2005). Analiz ustojchivosti i upravlyaemosti dinamicheskih sistem metodami teorii katastrof. Moscow: Vyssh. shk., 326.
  3. Gavin, H. P. (2016). Generalized Coordinates, Lagrange’s Equations, and Constraints. Structural Dynamics, 1–23.
  4. Klimenko, A. A., Mihlin, Yu. V. (2009). Nelinejnaya dinamika pruzhinnogo mayatnika. Nelinejnaya mekhanika, 27, 51–65.
  5. Malineckij, G. G., Potapov, A. B., Podlazov, A. V. (2006). Nelinejnaya dinamika: podhody, rezul'taty, nadezhdy. Moscow: URSS, 280.
  6. Kecik, K. (2015). Dynamics and control of an active pendulum system. International Journal of Non-Linear Mechanics, 70, 63–72. doi: 10.1016/j.ijnonlinmec.2014.11.028
  7. Ding, F., Huang, J., Wang, Y., Matsuno, T., Fukuda, T., Sekiyama, K. (2010). Modeling and control of a novel narrow vehicle. 2010 IEEE International Conference on Robotics and Biomimetics. doi: 10.1109/robio.2010.5723487
  8. Butterworth, J. A., Pao, L. Y., Abramovitch, D. Y. (2008). The effect of nonminimum-phase zero locations on the performance of feedforward model-inverse control techniques in discrete-time systems. 2008 American Control Conference. doi: 10.1109/acc.2008.4586900
  9. Butikov, E. I. (2010). Stabilizaciya perevernutogo mayatnika (60 let mayatniku Kapicy). Komp'yuternye instrumenty v obrazovanii, 5, 39–51.
  10. Shironosov, V. G. (2000). Rezonans v fizike, himii i biologii. Izhevsk: Udmurtskij universitet, 92.
  11. Yehia, H. M. (2006). On the integrability of the motion of a heavy particle on a tilted cone and the swinging Atwood machine. Mechanics Research Communications, 33 (5), 711–716. doi: 10.1016/j.mechrescom.2005.06.015
  12. Tufillaro, N. B., Abbott, T. A., Griffiths, D. J. (1984). Swinging Atwood’s Machine. American Journal of Physics, 52 (10), 895–903. doi: 10.1119/1.13791
  13. Manzhaev, P. V., Levin, V. E. (2015). Issledovanie bol'shih kolebanij dvojnogo matematicheskogo mayatnika. Trudy XVI Vserossijskoj nauchno-tekhnicheskoj konferencii "Nauka. Promyshlennost'. Oborona". Novosibirsk, 526–530.
  14. Semkiv, O. M. (2016). Hrafichnyy komp'yuternyy sposib vyznachennya nekhaotychnykh trayektoriy kolyvan' mayatnykovykh system. Vestnyk Khar'kovskoho nats. avtomobyl'no-dorozhnoho unyversyteta, 72, 94–101.
  15. Girsh, A. G. (2013). Kompleksnaya geometriya – evklidova i psevdoevklidova. Moscow: Maska, 216.
  16. Stepanenko, O. S. (2006). Rabota na PK v ofise. Moscow: Vil'yams, 768.
  17. Kutsenko, L. M., Semkiv, O. M. (2016). Doslidzhennya initsiyuvannya rukhu vizka za dopomohoyu kolyvannya 2d-pruzhynnoho mayatnyka. Suchasni problemy modelyuvannya, 6, 71–76.
  18. Vishenkova, E. A., Holostova, O. V. (2012). K dinamike dvojnogo mayatnika s gorizontal'no vibriruyushchej tochkoj podvesa. Vestnik Udmurtskogo universiteta. Matematika. Mekhanika, 2, 114–129.
  19. Nalavade, M. R., Bhagat, M. J., Patil, V. V. (2014). Balancing Double Inverted Pendulum on A cart by Linearization Technique. International Journal of Recent Technology and Engineering (IJRTE), 3 (1), 153–157.

Downloads

Published

2017-04-24

How to Cite

Semkiv, O., Shoman, O., Sukharkova, E., Zhurilo, A., & Fedchenko, H. (2017). Development of projection technique for determining the non-chaotic oscillation trajectories in the conservative pendulum systems. Eastern-European Journal of Enterprise Technologies, 2(4 (86), 48–57. https://doi.org/10.15587/1729-4061.2017.95764

Issue

Section

Mathematics and Cybernetics - applied aspects