Recurrent transformation of the dynamics model for autonomous underwater vehicle in the inertial coordinate system

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.95783

Keywords:

autonomous underwater vehicle, inertial coordinate system, recurrent sequence, kinematic matrix

Abstract

We considered the motion equation for an autonomous underwater vehicle (AUV) with a manipulator onboard in the inertial coordinate system (ICS). A nonlinear system of differential equations takes into account in the form of attached mass coefficients the impact of infiltration effects and dissymmetry of the outer shell of the body. The work of manipulator and fixing elements is accounted for by additional forces and moments that occur as a consequence of their relative motion. The expressions of forces and moments are presented for the given kinematic schemes. A recurrent approximation method is applied, as result of which we transformed a solution for the system of nonlinear differential equations to the recurrent sequence of analytical expressions. The constructed sequence describes the dynamics of AUV with regard to the angular position and kinematic parameters without simplifications in the kinematic matrix. The algorithm that was synthesized based on this model is presented, which provides for presenting, in the form of recurrent sequence of actions and calculations, the expressions for analytical representation of solution for the direct problem on the AUV dynamics. Based on the analytical approximations of the model, we present expressions for an error that occurs as a consequence of angular deviations and simplifications in the kinematic matrices.

The dynamics of AUV was modeled and quantitative values of error were obtained as a function of operating and kinematic parameters of AUV in ICS. The derived models of dynamics and expressions for errors are important for decision support systems because they allow the representation of information about the motion of AUV and manipulator aboard in a uniform ICS. The possibilities obtained have eliminated obstacles to comprehensive modeling of technological AUV and creation of ACS. Using the results of modeling the impact of manipulator's work aboard AUV, we established factors that influence the magnitude of error when calculating by the simplified kinematic matrices. 

Author Biography

Alexander Trunov, Petro Mohyla Black Sea National University 68 Desantnykiv str., 10, Mykolaiv, Ukraine, 54003

PhD, Associate Professor, First Vice-Rector

Department of automation and computer-integrated technologies

References

  1. Blintsov, V. S. (1998). Pryvy’azni pidvodni systemy. Kyiv: Naukova Dumka, 231.
  2. Blintsov, V. S. (2010). Keruvannya prostorovym rukhom pidvodnoho aparata z urakhuvannyam vzayemozv’yazkiv mizh skladovymy rukhu po riznym osyam koordynat. Innovatsiyi v sudnobuduvanni ta okeanotekhnitsi. Mykolaiv: NUK, 406–408.
  3. Byelousov, I. (2013). Suchasni i perspektyvni nezaseleni pidvodni aparaty VMS SShA. Zakordonnyy viys'kovyy ohlyad, 5, 79–88.
  4. Bocharov, L. (2009). Nezaseleni pidvodni aparaty: Stan i zahal'ni tendentsiyi rozvytku. Elektronika: Nauka, Tekhnolohiya, Biznes, 7, 62–69.
  5. Lukomskij, Yu. A., Chugunov, V. S. (1988). Sistemy upravleniya morskimi podvizhnymi ob’ektami. Leningrad: izd. Sudostroenie, 272.
  6. Slizhevskij N. B. (1998). Hodkost' i upravlyaemost' podvodnyh tekhnicheskih sredstv. Nikolaev, 148.
  7. FDS3 (Forward Deployed Side Scan Sonar) Jane’s International Defense Review. Available at: http://www.janes.com
  8. Bremer, R. H., Cleophas, P. L. H., Fitski, H. J., Keus, D. (2007). TNO report. Unmanned surface and underwater vehicles. Netherlands, 126.
  9. Bohuslavs'kyy, A. B., Lokhin, V. M., Man'ko, S. V. (1995). Formuvannya znan' dlya planuvannya rukhiv robotiv v seredovyshchi z pereshkodamy na osnovi tekhnolohiyi ekspertnykh system. Shtuchnyy intelekt v systemakh avtomatychnoho keruvannya. Kyiv. Concept Ltd, 12–23.
  10. Trunov, O. M. (2007). Dynamika avariyno-ryatuval'noho aparatu v umovakh rehulyarnoho khvylyuvannya i shkvaliv. Zbirnyk naukovykh prats', NUK, 6, 30–41.
  11. Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, 575. doi: 10.1002/9781119994138
  12. From, P. J., Gravdahl, J. T., Pettersen, K. Y. (2014). Vehicle-Manipulator Systems. Springer London, 388. doi: 10.1007/978-1-4471-5463-1
  13. Han, J., Chung, W. K. (2007). Redundancy resolution for underwater vehicle-manipulator systems with minimizing restoring moments. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi: 10.1109/iros.2007.4399292
  14. McMillan, S., Orin, D. E., McGhee, R. B. (1995). Efficient dynamic simulation of an underwater vehicle with a robotic manipulator. IEEE Transactions on Systems, Man, and Cybernetics, 25 (8), 1194–1206. doi: 10.1109/21.398681
  15. Rusu, R. B., Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). 2011 IEEE International Conference on Robotics and Automation. doi: 10.1109/icra.2011.5980567
  16. Trunov, A. (2016). Realization of Paradigm of Prescribed Control of Nonlinaer as the Maximization Adequacy Problem. Eastern-European Journal of Enterprise Technologies, 4 (4 (82)), 50–58. doi: 10.15587/1729-4061.2016.75674
  17. Trunov, A. (2016). Criteria for the evaluation of model's error for a hybrid architecture DSS in the underwater technology ACS. Eastern-European Journal of Enterprise Technologies, 6 (9 (84)), 55–62. doi: 10.15587/1729-4061.2016.85585
  18. Trunov, A. N. (2012). Recurrence approximation in problems of modeling and design. Mykolaiv, 270.
  19. Lendyuk, T., Sachenko, S., Rippa, S., Sapojnyk, G. (2015). Fuzzy rules for tests complexity changing for individual learning path construction. 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: 10.1109/idaacs.2015.7341443
  20. Fisun, M., Shved, A., Nezdoliy, Y., Davydenko, Y. (2015). The experience in application of information technologies for teaching of disabled students. 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: 10.1109/idaacs.2015.7341441
  21. Kondratenko, Y. P., Sidenko, I. V. (2014). Decision-Making Based on Fuzzy Estimation of Quality Level for Cargo Delivery. Studies in Fuzziness and Soft Computing, 331–344. doi: 10.1007/978-3-319-06323-2_21
  22. Kondratenko, Y. P., Gerasin, O. S., Topalov, A. M. (2015). Modern sensing systems of intelligent robots based on multi-component slip displacement sensors. 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: 10.1109/idaacs.2015.7341434
  23. Nykorak, A., Hiromoto, R. E., Sachenko, A., Koval, V. (2015). A wireless navigation system with no external positions. 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: 10.1109/idaacs.2015.7341433
  24. Dyda, A. A., Oskin, D. A., Artemiev, A. V. (2015). Robot dynamics identification via neural network. 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). doi: 10.1109/idaacs.2015.7341437
  25. Trunov, O. M. (2014). Methodology of evaluation alternatives on the basis several etalons. Naukovi pratsi: Naukovo-metodychnyy zhurnal. Komp’yuterni tekhnolohiyi, 237 (225), 99–104.
  26. Trunov, O. M., Belikov, O. E. (2015). Modeling of interaction EMW with biologics objects in during phototherapy. Sience and methodology journal, 94, 23–27.
  27. Trunov, O. M., Novosadovskiy, O. O., Kikhtenko, D. P. (2014). Improving the mathematical model of the dynamics for underwater vehicles with asymmetrical hulls. Naukovi pratsi: Naukovo-metodychnyy zhurnal. Komp’yuterni tekhnolohiyi, 237 (225), 90–98.
  28. Yastrebov, V. S., Garbuz, E. I., Filatov, A. M., Blincov, V. S., Ivanishin, B. P., Trunov, A. N., Pavlov, A. P. (1990). Razrabotka i ispytanie adaptivnogo podvodnogo robota. Sb. nauchnyh trudov instituta Okeanologii im. P. P. Shirshova AN SSSR. Moscow, 98–112.

Downloads

Published

2017-04-24

How to Cite

Trunov, A. (2017). Recurrent transformation of the dynamics model for autonomous underwater vehicle in the inertial coordinate system. Eastern-European Journal of Enterprise Technologies, 2(4 (86), 39–47. https://doi.org/10.15587/1729-4061.2017.95783

Issue

Section

Mathematics and Cybernetics - applied aspects