Cargo flows distribution over the loading sites of enterprises by using methods of artificial intelligence
DOI:
https://doi.org/10.31498/2225-6733.33.2016.105193Keywords:
automation, fuzzy logic, plan-graphic, artificial intelligenceAbstract
Development of information technologies and market requirements in effective control over cargo flows, forces enterprises to look for new ways and methods of automated control over the technological operations. For rail transportation one of the most complicated tasks of automation is the cargo flows distribution over the sites of loading and unloading. In this article the solution with the use of one of the methods of artificial intelligence – a fuzzy inference has been proposed. The analysis of the last publications showed that the fuzzy inference method is effective for the solution of similar tasks, it makes it possible to accumulate experience, it is stable to temporary impacts of the environmental conditions. The existing methods of the cargo flows distribution over the sites of loading and unloading are too simplified and can lead to incorrect decisions. The purpose of the article is to create a distribution model of cargo flows of the enterprises over the sites of loading and unloading, basing on the fuzzy inference method and to automate the control. To achieve the objective a mathematical model of the cargo flows distribution over the sites of loading and unloading has been made using fuzzy logic. The key input parameters of the model are: «number of loading sites», «arrival of the next set of cars», «availability of additional operations». The output parameter is «a variety of set of cars». Application of the fuzzy inference method made it possible to reduce loading time by 15% and to reduce costs for preparatory operations before loading by 20%. Thus this method is an effective means and holds the greatest promise for railway competitiveness increase. Interaction between different types of transportation and their influence on the cargo flows distribution over the sites of loading and unloading hasn’t been considered. These sites may be busy transshipping at that very time which is characteristic of large enterprises. Besides, the question of gaining experience in this model isn't tackled yet and it is to be developed in further publicationsReferences
Список использованных источников (ГОСТ):
Киркин А.П. Управление транспортными процессами доставки грузов в городских условиях с дополнением критериев логистики / А.П. Киркин, В.И. Киркина // Вісник Схiдноукраiнського національного університету імені Володимира Даля. – Луганськ, 2013. – № 5 (194) ч. 2 – С. 61-67.
Короп Г.В. Удосконалення оперативного планування обробки вагонопотоків в транспортних системах підприємств : автореф. дис. … канд. техн. наук : 05.22.12 / Г.В. Короп; Східноукр. нац. ун-т ім. В. Даля. – Луганськ., 2012. – 20 с.
Новак В. Математические принципы нечёткой логики / В. Новак, И. Перфильева, И. Мочкрож. – М. : Физматлит, 2006. – 352 с.
Дьяконов А.П. Математические пакеты расширения Matlab. Специальный справочник / А.П. Дьяконов, В.В. Круглов. – СПб. : Питер, 2001. – 480 с.
Sandler Uziel. Neural Cell Behavior and Fuzzy Logic / Uziel Sandler, Lev Tsitolovsky. – Springer, 2008. – 478 р.
References:
Kirkin A.P. Upravlenie transportnymi protsessami dostavki gruzov v gorodskikh usloviiakh s dopolneniem kriteriev logistiki [Management of transport processes of delivery of freights in city conditions with addition of criteria of logistics]. Visnik Skhidnoukrains'kogo natsіonal'nogo universitetu іmenі Volodimira Dalia – Visnik of the Volodymyr Dahl East Ukrainian national university, Luhansk, 2013, no. 5 (194), vol. 2, pp. 61-67. (Rus.)
Korop G.V. Sovershenstvovanie operativnogo planirovaniia obrabotki vagonopotokov v transportnoi sistemakh predpriiatii. Avtoref. diss. kand. techn. nauk [Improvement of operational planning of processing traffic volumes in transport systems of the enterprises. Thesis of cand. tech. sci. diss.]. Lugansk, 2012. 20 p. (Ukr.)
Novak V., Perfil'eva I., Mochkrozh I. Matematicheskie printsipy nechetkoi logiki [Mathe-matical Principles of Fuzzy Logic]. Moscow, Fizmatlit Publ., 2006. 352 p. (Rus.)
D'yakonov A.P., Kruglov V.V. Matematicheskie pakety rasshireniia Matlab. Spetsial'nyi spravochnik [Mathematical expansion packs Matlab. A special handbook]. Saint Petersburg, Piter Publ., 2001. 480 p. (Rus.)
Sandler Uziel, Tsitolovsky Lev. Neural Cell Behavior and Fuzzy Logic. Springer, 2008. 478 р.
Downloads
How to Cite
Issue
Section
License
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







