Energy method of some dynamic strengh calculations

Authors

  • T. M. Karpenko State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine
  • P. S. Tanasienko State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine
  • S. R. Fedorova State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine

DOI:

https://doi.org/10.31498/2225-6733.35.2017.125179

Keywords:

mass, rigidity factor, natural frequency of vibrations, dynamic coefficient, algorithm, stress, deformation

Abstract

The known energy method based on the law of mechanical energy conservation of the mechanical system with one degree of freedom is generalized in the article, that makes it possible to decide the questions of natural frequencies and dynamic coefficient at different types of deformations. Considering Hooke's law on dynamic loading true and deformations and tensions increase gradual, (having potential energies on a static loading), we consider impact potential energy equal to initial kinetic energy of the mechanical system. Dynamic coefficient at torsion, flexural and longitudinal impacts has been got, and the literary source is indicated for the flexural impact in different points of a beam, taking into account the masses of the struck bodies. The obtained maximal stresses obtained at torsion and longitudinal impacts testify that in contrast to static stresses dynamic stresses at impact depend on the volume (but not on the area) of the struck body. Attention is drawn to the circumstance, that the dynamic coefficient at vibrations depends on natural frequency. Therefore the designers of machines must select inertness and other properties of the studied objects so that natural frequencies did not coincide with the shaft rotation frequencies and with the disturbance factors frequencies. Algorithm of calculations of dynamic–response factor at impact taking into account the struck body mass as well as algorithm of getting natural frequencies of longitudinal and torsion, flexural vibrations for some widespread calculation charts have been offered. The material of the article is taken from the known sources and generalized in a condensed form, (suitable for students and beginning designers) with the purpose of implementation of strength calculations of dynamic models with one degree of freedom

Author Biographies

T. M. Karpenko, State higher educational establishment "Priazovskyi state technical university", Mariupol

Кандидат физико-математических наук, доцент

P. S. Tanasienko, State higher educational establishment "Priazovskyi state technical university", Mariupol

Студент

S. R. Fedorova, State higher educational establishment "Priazovskyi state technical university", Mariupol

Студент

References

Список использованных источников:

Беляев Н.М. Сопротивление материалов : учебник для втузов / Н.М. Беляев. – 13-е изд. – М. : Физматгиз, 1962. – 856 с.

Пановко Я.Г. Основы прикладной теории упругих колебаний / Я.Г. Пановко. – М. : Высшая школа, 1967. – 432 с.

Тимошенко С.П. Колебания в инженерном деле / С.П. Тимошенко. – М. : Физматгиз, 1960. – 380 с.

Кожевников С.Н. Динамика машин с упругими звеньями / С.Н. Кожевников. – К. : Изд. АН УССР, 1961. – 160 с.

Панарин Н.Я. Сопротивление материалов / Н.Я. Панарин, И.И. Тарасенко. – Л.; М. : Госстройиздат, 1962. – 528 с.

Ривин Е.И. Динамика привода станков / Е.И. Ривин. – М. : Машиностроение, 1966. – 204 с.

Королев А.А. Конструкция и расчет машин и механизмов прокатных станов / А.А. Королев. – М. : Металлургия, 1985. – 376 с.

References:

Beljaev N.M. Soprotivlenie materialov [Resistance of materials]. Moscow, Fizmatgiz Publ., 1962. 856 р. (Rus.)

Panovko Ja.G. Osnovy prikladnoj teorii uprugih kolebanij [Fundamentals of the applied theory of elastic oscillations]. Moscow, Vysshaja shkola Publ., 1967. 432 р. (Rus.)

Timoshenko S.P. Kolebanija v inzhenernom dele [Fluctuations in Engineering]. Moscow, Fizmatgiz Publ., 1960. 380 p. (Rus.)

Kozhevnikov S.N. Dinamika mashin s uprugimi zven'jami [Dynamics of machines with elastic links]. Kiev, AN USSR Publ., 1961. 160 p. (Rus.)

Panarin N.Ja., Tarasenko I.I. Soprotivlenie materialov [Resistance of materials]. Leningrad, Moscow, Gosstrojizdat Publ., 1962. 528 p. (Rus.)

Rivin E.I. Dinamika privoda stankov [Dynamics of the machine tool drive]. Moscow, Mashinostroenie Publ., 1966. 204 p. (Rus.)

Korolev A.A. Konstrukcija i raschet mashin i mehanizmov prokatnyh stanov [Construction and calculation of machines and mechanisms of rolling mills]. Moscow, Metallurgija Publ., 1985. 376 p. (Rus.)

How to Cite

Karpenko, T. M., Tanasienko, P. S., & Fedorova, S. R. (2018). Energy method of some dynamic strengh calculations. Reporter of the Priazovskyi State Technical University. Section: Technical Sciences, (35), 138–145. https://doi.org/10.31498/2225-6733.35.2017.125179