Design features of the plasmatron for surface nanostructuring of the metal cutting tool
DOI:
https://doi.org/10.31498/2225-6733.40.2020.216035Keywords:
plasmatron, nanostructuring, plasma modification, metal-cutting tool, sectioned interelectrode insertAbstract
The main controlled thermophysical parameters of plasma modification are the maximum heating temperature T and cooling rate W of the surface layer. The parameters T and W during the plasma modification are not the parameters of direct control, but are complex ones, the value of which being influenced by a large number of factors – the power of the plasma jet (determined by the current strength I and the voltage in the jet U), the pressure and flow rate of the plasma-forming gas (Pg, Qg), processing speed (plasmatron movement v), pressure and flow rate of cooling water (Рw, Qw), processing distance h, thermophysical characteristics of the processed material, shape and dimensions of the processed product. The effective use of direct action plasmatrons is known; while indirect plasmatrons are used more widely. Of the varieties of indirect plasmatrons, the most preferable is the use of plasmatrons with a sectioned interelectrode insert (SII). The use of the plasmatrons with SII makes it possible to implement the technology of plasma nanostructuring either in a narrow range of mode parameters (microfusion); or when machining a tool with a cutting edge of a special (serrated) shape – for example, threading or thread rolling. Consequently, for a wider practical use of the plasma nanostructuring technology, it is necessary to improve the basic design of the plasmatron in order to implement the conditions for nanostructuring (simultaneous achieving high heating temperatures close to the melting temperature of the instrumental material and a cooling rate of about 106...107°С/sec), for range of mode parameters and for a wide range of hardened tools. The established computational and experimental regularities make it possible to choose the optimal combinations of the design parameters of the plasmatron and the parameters of the processing mode for the implementation of the process of plasma nanostructuring of the metalworking tool. The work is performed individually for each specific combination: plasmatron – processed material (steel, alloy) – shape and size of the toolReferences
Перелік використаних джерел (ДСТУ):
Самотугин С.С. Плазменное упрочнение инструментальных материалов / С.С. Самотугин, Л.К. Лещинский. – Донецк : Новый мир, 2002. – 338 с.
Сафонов Е.Н. Плазменная закалка деталей машин / Е.Н.Сафонов. – Нижний Тагил : НТИ УрФУ, 2014. – 116 с.
Лащенко Г.И. Плазменное упрочнение и напыление / Г.И. Лащенко. – К. : Экотехноло-гия, 2003. – 64 с.
Балановский А.Е. Плазменное поверхностное упрочнение металлов / А.Е. Балановский. – Иркутск : ИрГТУ, 2006. – 180 с.
Самотугин С.С. Оптимизация конструкции плазмотрона для поверхностного упрочне-ния материалов / С.С. Самотугин, И.И. Пирч, В.А. Мазур // Сварочное производство. – 2002. – № 12. – С. 32-35.
Самотугин С.С. Плазменное градиентное упрочнение стальных изделий / С.С. Самоту-гин, В.А. Гагарин. – Мариуполь : ПГТУ, 2017. – 151 с.
Крапошин В.С. Поверхностная закалка стали 9ХФ при нагреве теплом плазменной го-релки / В.С. Крапошин, А.В. Бобров, О.С. Гапоненко // Металловедение и термическая обработка металлов. – 1989. – № 11. – С. 13-17.
Петров С.В. Плазма продуктов сгорания в инженерии поверхности / С.В. Петров, А.Г. Сааков. – Киев : ТОПАС, 2000. – 220 с.
Корсунов К.А. Повышение эффективности работы электродуговых плазмотронов для обработки материалов / К.А. Корсунов, Р.Н. Брожко // Успехи прикладной физики. – 2013. – Т. 1, № 2. – С. 161-167.
Коротков В.А. Наноструктурирование стали плазменной дугой / В.А.Коротков, С.П. Ананьев, В.Я. Шур // Технология машиностроения. – 2010. – № 4. – С. 5-7.
Чирков А.А. Лазерно-плазменное наноструктурирование поверхностных слоев сталей при атмосферных условиях / А.А. Чирков // Фотоника. – 2008. – № 4. – С. 28-30.
Тополянский П.А. Финишное плазменное упрочнение – нанотехнология (к 25-летию создания) / П.А. Тополянский, Н.А. Соснин, С.А. Ермаков // Технологии упрочнения, нанесения покрытий и ремонта : Теория и практика. – СпБ. : Изд-во Пол. ун-та, 2012. – Ч. 2. – С. 344-366.
Самотугин С.С. Плазменное микро- и наноструктурирование поверхности инструментальных сталей / С.С. Самотугин, В.А. Мазур // Упрочняющие технологии и покрытия, 2013. – № 4. – С. 29-37.
Самотугин С.С. Нанотехнологии в машиностроении: плазменное модифицирование резьбонарезного инструмента / С.С. Самотугина, О.А. Христенко // Вісник Приазовського державного технічного університету / ДВНЗ «ПДТУ». – Маріуполь, 2018. – Вип. 37. – С. 105-114. – (Серія : Технічні науки). – Mode of access : DOI: 10.31498/2225-6733.37.2018.160266.
Плазменное субмикро- и наноструктурирование инструмента из стали Х12М / С.С. Самотугин, Ю.С. Самотугина, О.А. Христенко, Т.К. Ткаченко, В.И. Лавриненко // Технология машиностроения. – 2020. – № 5. – С. 42-52.
Николаев А.В. Плазменно-дуговой нагрев вещества / А.В. Николаев // Плазменные процессы в металлургии и технологии неорганических материалов. – М. : Наука, 1973. – С. 20-32.
References:
Samotugin S.S., Leshchinsky L.K. Plasmennoye uprochneniye instrumentalnych materialov [Plasma hardening of instrumental materials]. Donetsk, Novy Mir Publ., 2002, 338 p. (Rus.)
Safonov E.N. Plasmennoye uprochneniye detaley mashin [Plasma hardening of machine parts]. Nizhny Tagil, NTI UrFU Publ., 2014. 116 p. (Rus.)
Lashchenko G.I. Plasmennoye uprochneniye i napyleniye [Plasma hardening and spraying]. Kiev, Ecotechnology Publ., 2003. 64 p. (Rus.)
Balanovsky A.E. Plazmennoye poverkhnostnoye uprochneniy emetallov [Plasma surface hardening of metals]. Irkutsk, ISTU Publ., 2006. 180 p. (Rus.)
Samotugin S.S., Pirch I.I., Mazur V.A. Optimizatsiya konstruktsii plazmotrona dlya poverkhnostnogo uprochneniya materialov [Optimization of the design of a plasmatron for surface hardening of materials]. Svarochnoy eproizvodstvo – Welding production, 2002, no. 12, pp. 32-35. (Rus.)
Samotugin S.S. Gagarin V.A. Plazmennoye gradiyentnoye uprochneniye stal’nykh izdeliy [Plasma gradient hardening of steel products, monograph]. Mariupol, PSTU Publ., 2017. 151 p. (Rus.)
Kraposhin V.S., Bobrov A.V., Gaponenko O.S. Poverkhnostnaya zakalka stali 9KHF pri nagreve teplom plazmennoy gorelki [Surface hardening of steel 9CrW when heated by the heat of a plasma torch]. Metallovedeniye i termicheskaya obrabotka metallov – Metallurgy and heat treatment of metals, 1989, no. 11, pp. 13-17. (Rus.)
Petrov S.V., Saakov A.G. Plazma produktov sgoraniya v inzhenerii poverkhnosti [Plasma of combustion products in surface engineering]. Kiev, TOPAS Publ., 2000. 220 p. (Rus.)
Korsunov K.A., Brozhko R.N. Povysheniye effektivnosti raboty elektrodugovykh plazmo-tronov dlya obrabotki materialov [Improving the efficiency of electric arc plasmatrons for material processing]. Uspekhi prikladnoi fiziki – Advances in Applied Physics, 2013, vol. 1, no. 2, pp.161-167. (Rus.)
Korotkov V.A., Ananiev S.P., Shur V.Ya. Nanostrukturirovaniye stali plazmennoy dugoy [Nanostructuring of steel with a plasma arc]. Tekhnologiya mashinostroyeniya – Mechanical Engineering, 2010, no. 4, pp. 5-7. (Rus.)
Chirkov A.A. Lazerno-plazmennoye nanostrukturirovaniye poverkhnostnykh sloyev staley pri atmosfernykh usloviyakh [Laser-plasma nanostructuring of surface layers of steels under atmospheric conditions]. Fotonika – Photonics, 2008, no. 4, pp. 28-30. (Rus.)
Topolyansky P.A., Sosnin N.A., Ermakov S.A. Finishnoye plazmennoye uprochneniye – nanotekhnologiya (k 25-letiyu sozdaniya) [Final plasma hardening – nanotechnology (to the 25th anniversary of its creation)]. Tekhnologii uprochneniya, naneseniya pokrytiy i remonta: Teoriya i praktika – Technologies of hardening, coating and repair: Theory and practice, 2012, vol. 2, pp. 344-366. (Rus.)
Samotugin S.S, Mazur V.A. Plazmennoye mikro- i nanostrukturirovaniye poverkhnosti instrumental’nykh staley [Plasma micro- and nanostructuring of the surface of tool steels]. Uprochnyayushchiye tekhnologii i pokrytiya – Strengthening technologies and coatings, 2013, no. 4, pp. 29-37. (Rus.)
Samotugin S.S., Samotugina Yu.S., Khristenko O.A. Nanotekhnologii v mashinostroyenii: plazmennoyemodifitsirovaniyerez’bonareznogoinstrumenta [Nanotechnologies in mechanical engineering: plasma modification of thread-cutting tools]. Vіsnik Priazovs’kogo derzhavnogo tekhnіchnogo unіversitetu. Serіia: Tekhnіchnі nauki – Reporter of the Pri-azovskyi State Technical University. Section: Technical sciences, 2018, no. 37, pp. 105-114. doi: 10.31498/2225-6733.37.2018.160266. (Rus.)
Samotugin S.S., Samotugina Yu.S., Khristenko O.A., Tkachenko T.K., Lavrinenko V.I. Plazmennoye submikro- i nanostrukturirovaniye instrumenta iz stali KH12M [Plasma submicro- and nanostructuring of a tool made of Cr12Mo steel]. Tekhnologiya mashinostroyeniya – Mechanical engineering technology, 2020, no. 5, pp. 42-52. (Rus.)
Nikolayev A.V. Plazmenno-dugovoy nagrev veshchestva [Plasma-arc heating of matter]. Plazmennyye protsessy v metallurgii i tekhnologii neorganicheskikh materialov – Plasma processes in metallurgy and technology of inorganic materials, 1973, pp. 20-32. (Rus.)
Downloads
How to Cite
Issue
Section
License
The journal «Reporter of the Priazovskyi State Technical University. Section: Technical sciences» is published under the CC BY license (Attribution License).
This license allows for the distribution, editing, modification, and use of the work as a basis for derivative works, even for commercial purposes, provided that proper attribution is given. It is the most flexible of all available licenses and is recommended for maximum dissemination and use of non-restricted materials.
Authors who publish in this journal agree to the following terms:
1. Authors retain the copyright of their work and grant the journal the right of first publication under the terms of the Creative Commons Attribution License (CC BY). This license allows others to freely distribute the published work, provided that proper attribution is given to the original authors and the first publication of the work in this journal is acknowledged.
2. Authors are allowed to enter into separate, additional agreements for non-exclusive distribution of the work in the same form as published in this journal (e.g., depositing it in an institutional repository or including it in a monograph), provided that a reference to the first publication in this journal is maintained.







