Control of penetration zone GMAW

Authors

  • V. P. Ivanov State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine
  • O. D. Razmyshlyaev State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine
  • O. V. Lavrova State higher educational establishment "Priazovskyi state technical university", Mariupol, Ukraine

DOI:

https://doi.org/10.31498/2225-6733.32.2016.83724

Keywords:

weld pool, penetration zone, a mathematical model, the control of formation

Abstract

Thermal properties of the base metal, shielding medium and the nature of the electrode metal transfer to a great extent determine the penetration area formation in gas-arc welding. It is not always possible to take into account the influence of these factors on penetration front forming within the existing models. The aim of the work was to research the penetration area forming in gas-arc welding. The research of the penetration area forming in gas-arc welding of CrNi austenitic steels was made. The parameters of the regime as well as the kind of the gaseous medium influence on the formation of the penetration zone were studied. The article shows a linear proportional relationship between the electrode feed rate and the size of the base metal plate. The penetration area formation mode for welding in argon and carbon dioxide have been worked out. Diameter, feed rate and the speed of the electrode movement have been chosen as the main input parameters. Multiple regression analysis method was used to make up the modes. The relations of the third order that make it possible to take into account the electrode metal transfer and thermal properties change of the materials to be welded were used. These relationships show quite good agreement with the experimental measurements in the calculation of the fusion zone shape with consumable electrode in argon and carbon dioxide. It was determined that the shape of the melting front curve can be shown as a generalized function in which the front motion parameters depend on feed rate and the diameter of the electrode. Penetration zone growth time is determined by the welding speed and is calculated as a discrete function of the distance from the electrode with the spacing along the movement coordinate. The influence of the mode parameters on the formation of the fusion zone has been investigated and the ways to manage and stabilize the weld pool formation have been identified. The modes can be used to develop effective ways to manage and control the welding process. Making up of the control systems as well as surfacing control involve the selection of the parameters that directly influence the formation of the melting zone as well as the use of these parameters as control signals in real time regime. The influence of the mode parameters on the formation of the fusion zone has been investigated and the ways to manage and stabilize the weld pool formation have been identified. The penetration zone modes formation for the fixed and moving electrodes have been worked out. The relations were calculated through statistical processing of macrosections penetration zones parameters measurement results, the macrosections being obtained by means of arc welding in shielding gases for various diameters of the electrode and various feed rate ranges (current), according to the arc time and its speed of movement

Author Biographies

V. P. Ivanov, State higher educational establishment "Priazovskyi state technical university", Mariupol

Кандидат технічних наук, доцент

O. D. Razmyshlyaev, State higher educational establishment "Priazovskyi state technical university", Mariupol

Доктор технічних наук, професор

O. V. Lavrova, State higher educational establishment "Priazovskyi state technical university", Mariupol

Кандидат технічних наук, доцент

References

Варуха Е.Н. Расчет глубины проплавления изделия при сварке в углекислом газе / Е.Н. Варуха, А.А. Морозов // Автоматическая сварка. – 2002. –№ 8. – С. 20-23.

Numerical analysis of keyhole welding of mild steel plate with the plasma arc / S. Tashiro et al. // Transactions of JWRI. – 2010. – Vol. 39, № 1. – Pр. 27-31.

Размышляев А.Д. Расчетная оценка влияния конвекции жидкого металла на размеры сварочной ванны при дуговой наплавке / А.Д. Размышляев, В.Р. Маевский // Автоматическая сварка. – 1999. – № 8. – С. 22-24.

Дмитрик В.В. Численное решение краевых задач теории электродуговой сварки на ос-нове схемы Галеркина / В.В. Дмитрик, В.И. Калиниченко // Доповіді НАН України. – 2002. –№ 5. – С. 101-108.

Иванов В.П. Повышение эффективности процесса электродуговой наплавки управле-нием гидродинамикой сварочной ванны / В.П. Иванов // Вісник Приазовського державного технічного університету : Зб. наук. пр. / ДВНЗ «ПДТУ» – Маріуполь, 2013. – Вип. 26 – С. 150-160.

Tatsukawa I. Influence of filler metal on weld bead penetration and shape in automatic TIG arc welding / I. Tatsukawa, S. Satonaka, M. Inada // Welding Society Proceedings. – 1987. – Vol. 5, № 2 – Pр. 187-193.

Choi S.K. Dynamic simulation of metal transfer in GMAW, Part 1: Globular and spray transfer modes / S.K. Choi, C.D. Yoo, Y.S. Kim // Welding Journal. – 1998. – Vol. 77, № 1. – Pр. 38-s-44-s.

Experiment and numerical simulation in temperature distribution and welding distortion in GMA welding / S. Yamane et al. // Transactions of JWRI. – 2010. – Vol. 39(2), № 2. – Pр. 190-192.

Park H. Analysis of weld geometry considering the transferring droplets in gas metal arc welding/ H. Park, S. Rhee // JSME international Journal (series C). – 2001. – Vol. 44, № 3. – Pр. 856-862.

Lu S. Weld shape variation and electrode oxidation behavior under Ar- (Ar-CO2) double shielded GTA welding / S. Lu, H. Fujii, K. Nogi // Journal of Materials Science & Technology. – 2010. – № 26(2), – Pр. 170-176.

Saito K. Influence of the oxide film on the weld penetration phenomena of stainless steel / K. Saito // Memoirs of Fukui university of technology. – 1995. – Vol. 25, Part I. – Pр. – 89-96.

Размышляев А.Д. Эффективность процесса проплавления основного металла при дуговой наплавке проволокой под флюсом / А.Д. Размышляев, М.В. Миронова // Сварочное производство. – 2011. – № 7. – С. 3-8.

How to Cite

Ivanov, V. P., Razmyshlyaev, O. D., & Lavrova, O. V. (2016). Control of penetration zone GMAW. Reporter of the Priazovskyi State Technical University. Section: Technical Sciences, (32), 118–125. https://doi.org/10.31498/2225-6733.32.2016.83724