Research into fatty acid composition of probiotic consortiums with the inclusion of propionic acid bacteria

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.101015

Keywords:

propionic acid bacteria, bifidobacteria, saturated fatty acids, unsaturated fatty acids

Abstract

We studied fatty acid composition of the bacterial leaven of bifidobacteria and propionic acid bacteria that were grown together, and in a monoculture on the lactose medium with the addition of soybean serum in the amount of 3 %. The polyunsaturated fatty acids cannot be synthesized de novo in the organism of mammals. For this reason, searching for the new sources of polyunsaturated fatty acids is a relevant problem of biotechnology. Microorganisms appear to be a promising raw material. They are capable of synthesizing and accumulating in the cells up to 70 % lipids, including free fatty acids. In the course of the accumulation of biomass of the examined strains it was revealed that the propionic acid bacteria enter symbiotic relations with bifidobacteria. In the consortium, density of the population of both types of microorganisms was larger than that in a monoculture. We employed the dynamic method of gas chromatography in experimental studies using a flame-ionization detector. The results obtained allowed us to establish that the bacterial leaven В.longum-Ya3 and P.shermanii-PS4 differed from other samples by the high content of unsaturated fatty acids. In this leaven, the amount of linoleic acid was the largest and made up 23.99 % of the total sum of fatty acids.

The data received confirm the expediency of using the probiotic bacteria for constructing the effective biologically active additives that contain essential fatty acids.

Author Biographies

Larysa Krupytska, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Postgraduate student

Department of biochemistry, microbiology and nutrition physiology

Leonid Kaprelyants, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor

Department of biochemistry, microbiology and nutrition physiology

Liudmyla Trufkati, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of biochemistry, microbiology and nutrition physiology

Tatyana Shpyrko, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of biochemistry, microbiology and nutrition physiology

References

  1. Hamagaeva, I. S., Boyarineva, I. V., Potapchuk, N. (2013). The study of probiotic properties of combined starter. Tehnika i tehnologija pishhevyh proizvodstv, 1 (28), 54–58.
  2. Benjamin, S., Spener, F. (2009). Conjugated linoleic acids as functional food: an insight into their health benefits. Nutrition & Metabolism, 6 (1), 36. doi: 10.1186/1743-7075-6-36
  3. Kalashnikova, S. P., Tret'yakov, N. Yu., Solov'ev, V. G. (2014). Zhirnokislotnyi sostav biologicheski aktivnoy dobavki «Medvezhiy zhir» i ego vliyanie na svertyvanie krovi v ehksperimente. Sovremennye problemy nauki i obrazovaniya, 6.
  4. Titov, V. N. (2012). Sintez nasyshchennyh, monoenovyh, nenasyshchennyh i polienovyh zhirnyh kislot v filogeneze. Evolyucionnye aspekty ateroskleroza. Uspekhi sovremennoy biologii, 132 (2), 181–199.
  5. Wertz, P. (2009). Essential fatty acids and dietary stress. Toxicology and Industrial Health, 25 (4-5), 279–283. doi: 10.1177/0748233709103035
  6. Torshin, I. Yu., Gromova, O. A., Egorova, E. Yu., Rudakov, K. V. (2011). Sistematicheskiy analiz molekulyarnyh mekhanizmov vozdeystviya omega-3 polinenasyshchennyh zhirnyh kislot na aritmiyu. Kardiologiya, 5, 13–16.
  7. Athalye, S. K. (2008). Production of Eicosapentaenoic acid from biodiesel derived crude glycerol using fungal culture. Virginia Polytechnic Institute and State University. Available at: http://hdl.handle.net/10919/34082
  8. Curkan, Ya. S. (2015). Selekciya mikroorganizmov s vysokim soderzhaniem prakticheski znachimyh polinenasyshchennyh zhirnyh kislot. Almaty, 150.
  9. Vahvaselka, M., Laakso, S. (2010). Production ofcis-9,trans-11-Conjugated Linoleic Acid in Camelina Meal and Okara by an Oat-Assisted Microbial Process. Journal of Agricultural and Food Chemistry, 58 (4), 2479–2482. doi: 10.1021/jf903383x
  10. Kuhl, G., De Dea Lindner, J. (2016). Biohydrogenation of Linoleic Acid by Lactic Acid Bacteria for the Production of Functional Cultured Dairy Products: A Review. Foods, 5 (1), 13. doi: 10.3390/foods5010013
  11. Wang, L.-M., Lv, J.-P., Chu, Z.-Q., Cui, Y.-Y., Ren, X.-H. (2007). Production of conjugated linoleic acid by Propionibacterium freudenreichii. Food Chemistry, 103 (2), 313–318. doi: 10.1016/j.foodchem.2006.07.065
  12. Zarate, G. (2012). Dairy Propionibacteria: Less Conventional Probiotics to Improve the Human and Animal Health. Probiotic in Animals. doi: 10.5772/50320
  13. Kaprel'yants, L. V., Trufkati, L. V., Krupyts'ka, L. O. (2015). Nutrient medium for the cultivation bifidobacterium kind based on plant materials. Naukovyy visnyk L'vivs'koho natsional'noho universytetu veterynarnoyi medytsyny ta biotekhnolohiy imeni S. Z. Gzhyts'koho, 17 (4), 47–54.
  14. Kaprel'yants, L. V., Trufkati, L. V., Krupyts'ka, L. O. (2016). Pozhyvne seredovyshche dlya pidrakhunku kil'kosti zhyttyezdatnykh klityn bifidobakteriy u produktakh kharchuvannya ta preparatakh probiotysnoho proznachennya. Naukovyy visnyk L'vivs'koho natsional'noho universytetu veterynarnoyi medytsyny ta biotekhnolohiy imeni S. Z. Gzhyts'koho, 18 (1), 70–75.
  15. Malinin, M. L. (2008). Ispolzovanie standartnogo metoda opredeleniya obschego belka pri issledovanii syivorotki krovi zhivotnyih. Uspehi sovremennogo estestvoznaniya, 3, 105–106.
  16. Halilova, R. N., Abdurahmanova, N. M., Velieva, G. A. (2015). Kolichestvennoe opredelenie soderzhaniya rastvorimyih uglevodov v zhidkom ekstrakte klubney topinambura (Helianthus tuberosus). Innovatsionnaya nauka, 8-2, 16–17.
  17. Guo, M., Wang, L.-T., Wu, X., Xu, W., Yang, J.-H. (2008). A New Method for the Determination of Nucleic Acid Using an Eu3+– nicotinic Acid Complex as a Resonance Light Scattering Probe. Molecules, 14 (1), 10–18. doi: 10.3390/molecules14010010
  18. Falandysz, J., Chudzynski, K., Kojta, A. K., Jarzynska, G., Drewnowska, M. (2012). Comparison of two acid extraction methods for determination of minerals in soils beneath to Larch Bolete (Suillus grevillei) and aimed to estimate minerals sequestration potential in fruiting bodies. Journal of Environmental Science and Health, Part A, 47 (11), 1607–1613. doi: 10.1080/10934529.2012.680781
  19. Tkachenko, F. P., Maslov, I. I. (2015). Fatty acids of total lipids of species genus of Cystoseira C. Agardh (Black Sea, Crimea). Algologia, 25 (2), 115–124. doi: 10.15407/alg25.02.115
  20. Khosravi, A., Safari, M., Khodaiyan, F., Gharibzahedi, S. M. T. (2015). Bioconversion enhancement of conjugated linoleic acid by Lactobacillus plantarum using the culture media manipulation and numerical optimization. Journal of Food Science and Technology, 52 (9), 5781–5789. doi: 10.1007/s13197-014-1699-6

Downloads

Published

2017-06-08

How to Cite

Krupytska, L., Kaprelyants, L., Trufkati, L., & Shpyrko, T. (2017). Research into fatty acid composition of probiotic consortiums with the inclusion of propionic acid bacteria. Eastern-European Journal of Enterprise Technologies, 3(6 (87), 15–20. https://doi.org/10.15587/1729-4061.2017.101015

Issue

Section

Technology organic and inorganic substances