Numerical study of flow in the stage of an axial compressor with different topology of computational grid

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.101315

Keywords:

simulation of flow, computational grid, model of turbulent viscosity, stage of compressor, near-border layer

Abstract

We conducted a series of calculations with the models of turbulent viscosity k–e, SST and three variants of three-dimensional unstructured computational grids. For each variant of the computational grid we calculated each of the two models of turbulent viscosity at axial velocity at input from 110 to 150 m/s. Comparison of results of numerical experiments with data of the physical experimental studies revealed that an error of the computational research is 0.3...8.6 %. Results of the study showed that at the first phase of calculation of the stage of an axial compressor one can recommend using the model of turbulent viscosity k–e and the coarse computational grid. To solve the problems on internal aerodynamics of compressors taking into account the flow in the near-border layer and aerodynamic trail, it is expedient to employ the model of turbulent viscosity SST and the fine adaptive grid.

Author Biographies

Yuriy Tereshchenko, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

Doctor of Technical Sciences, Professor

Department of Aviation Engine

 

Ekaterina Doroshenko, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

PhD

Department of Aviation Engine

Ivan Lastivka, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

Doctor of Technical Sciences, Professor, Head of Department

Department of Higher Mathematics

Yuriy Tereshchenko, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

PhD

Department of aviation engine

References

  1. Tereshhenko, Ju. M. (1987). Aerodinamicheskoe sovershenstvovanie lopatochnyh apparatov kompressorov. Мoscow: Mashinostroenie, 168.
  2. Brusilovskiy, I. V. (1984). Aerodinamika osevyh ventiliatorov. Мoscow: Mashinostroenie, 240.
  3. Pinto, R. N., Afzal, A., D’Souza, L. V., Ansari, Z., Mohammed Samee, A. D. (2016). Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art. Archives of Computational Methods in Engineering. doi: 10.1007/s11831-016-9175-2
  4. Naseri, A., Boroomand, M., Sammak, S. (2016). Numerical investigation of effect of inlet swirl and total-pressure distortion on performance and stability of an axial transonic compressor. Journal of Thermal Science, 25 (6), 501–510. doi: 10.1007/s11630-016-0891-6
  5. Tereshhenko, Ju. M., Doroshenko, E. V., Abolhassan zade, Dzh. (2015). Flow simulation in compressor cascades at high angles of attack. Eastern-European Journal of Enterprise Technologies, 4 (8 (76)), 26–30. doi: 10.15587/1729-4061.2015.47206
  6. Tereshhenko, Ju. M., Doroshenko, E. V., Abolhassan zade, Dzh. (2015). Influence research of profile chords ratio on aerodynamic characteristics of tandem compressor cascade. Eastern-European Journal of Enterprise Technologies, 5 (8 (77)), 9–13. doi: 10.15587/1729-4061.2015.50535
  7. Song, P., Sun, J. (2015). Blade shape optimization for transonic axial flow fan. Journal of Mechanical Science and Technology, 29 (3), 931–938. doi: 10.1007/s12206-015-0207-x
  8. Janke, C., Bestle, D., Becker, B. (2015). Compressor map computation based on 3D CFD analysis. CEAS Aeronautical Journal, 6 (4), 515–527. doi: 10.1007/s13272-015-0159-y
  9. Yin, S., Jin, D., Gui, X., Zhu, F. (2010). Application and comparison of SST model in numerical simulation of the axial compressors. Journal of Thermal Science, 19 (4), 300–309. doi: 10.1007/s11630-010-0387-8
  10. Liu, Y., Yan, H., Fang, L., Lu, L., Li, Q., Shao, L. (2016). Modified k-ω model using kinematic vorticity for corner separation in compressor cascades. Science China Technological Sciences, 59 (5), 795–806. doi: 10.1007/s11431-015-6005-y
  11. Krivosheev, I. A., Chechulin, A. Ju., Hohlova, Ju. A. (2011). Choice model of turbulence in calculating loss of pressure in the flow of the gas turbine engine using software ANSYS CFX. Vestnik UGATU, 15 (2 (42)), 68–73.
  12. Bykov, L. V., Molchanov, A. M., Shherbakov, M. A., Janyshev, D. S. (2015). Vychislitel'naya mehanika sploshnyh sred v zadachah aviacionnoy i kosmicheskoy tehniki. Moscow: LENAND, 668.
  13. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32 (8), 1598–1605. doi: 10.2514/3.12149
  14. Jun, A. A. (2009). Teoriya i praktika modelirovaniya turbulentnyh techeniy. Moscow: Librokom, 274.
  15. Svechnikov, V. S., Kirillov, A. B. (1958). Aerodinamicheskie harakteristiki stupeni osevogo kompressora. Moscow: CAGI, 94.
  16. Boiko, A. V., Govorushhenko, Ju. N., Burlaka, M. V. (2012). Primenenie vychislitel'noi aerodinamiki k optimizacii lopatok turbomashin. Kharkiv: NTU «KhPI», 192.

Downloads

Published

2017-06-19

How to Cite

Tereshchenko, Y., Doroshenko, E., Lastivka, I., & Tereshchenko, Y. (2017). Numerical study of flow in the stage of an axial compressor with different topology of computational grid. Eastern-European Journal of Enterprise Technologies, 3(7 (87), 28–33. https://doi.org/10.15587/1729-4061.2017.101315

Issue

Section

Applied mechanics