Predicting a technical condition of railway automation hardware under conditions of limited statistical data

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.102005

Keywords:

microprocessor systems, railway automation, Student spread, method of maximum likelihood, microstatistics

Abstract

Here we report a method developed for the prediction of technical equipment of railway automation. It is based on the Student spread, the methods of maximum likelihood and unevenly accurate observations.

Development of the method for prediction was necessitated by a limited experience of operating the microelectronic systems of railway automation by domestic transportation enterprises. This led to a shortage of statistical data on their operation. Thus, the issue of the application of microstatistics for technical diagnosis of respective devices has become relevant.

As a result of the study we established that the basis for prediction may be formed by the principle of violation of the equivalence class of failure-free devices. The existence of a faulty device violates the integrity of the class. This makes it possible as a desired probability of failure of the device to determine the probability of its exiting the corresponding equivalence class. Under conditions of minimal statistical data, this approach has proved its suitability for micro-electronic equipment.

Thus, we obtain the possibility to predict technical condition of microelectronic equipment of railway automation under conditions of shortage of statistical data. The method has several disadvantages associated with deliberate understatement of values of confidence probability of failure-free work of devices. However, it lays the foundation for further improvement in the methodology of technical diagnosis of information-control systems on railway transport. This is executed with regard to the introduction of the newest modifications, not sufficiently tested as yet. 

Author Biographies

Valentin Moiseenko, Ukrainian State University of Railway Transport Feierbakh ave., 7, Kharkiv, Ukraine, 61050

Doctor of Technical Sciences, Professor, Head of Department

Department of specialized computer systems

Oleksandr Kameniev, Ukrainian State University of Railway Transport Feierbakh ave., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of automatic and computer remote control of train traffic

Vitalii Gaievskyi, Ukrainian State University of Railway Transport Feierbakh ave., 7, Kharkiv, Ukraine, 61050

Department of specialized computer systems

References

  1. Karevs, V. (2015) Railway automation and telematics system’s monitoring and diagnostic. Saarbrücken: LAP LAMBERT.
  2. Malovichko, V. V., Rybalka, R. V., Malovichko, N. V. et. al. (2012). Vyznachennia priorytetiv vyboru obiektiv diahnostuvannia ta kontroliu elektrychnoi tsentralizatsii z urakhuvanniam zatrymok poizdiv. Zbirnyk naukovykh prats Donetskoho instytutu zaliznychnoho transportu, 31, 57–61.
  3. Kustov, V. F. (2016). Pidvyshchennia bezpeky rukhu poizdiv za rakhunok vykorystannia mikroprotsesornykh system zaliznychnoi avtomatyky. Informatsiino-keruiuchi systemy na zaliznychnomu transporti. Chornomorsk, 4, 28–29.
  4. Peter, B. (2005). The Concepts of IEC 61508. An Overview and Analysis. Bielefeld: RVS, 52.
  5. Griebel, S. (2008). Sicherheitsnormen im Umbruch. Revision der EN 5012X Suite. Siemens AG: Industry Sector, Mobility Division, 20.
  6. Traussing, R. (2004). Safety-Critical Systems: Processes, Standards and Certification. Analysis, Design and Implementation of Reliable Software. Paderborn: Universitat Paderborn, 17.
  7. Braband, Y., Khyrao, Yu., Liudeke, D. Vzaymosviaz mezhdu standartamy CENELEC v oblasty zheleznodorozhnoi syhnalyzatsyy y druhymy standartamy po bezopasnosty. Informacionnaya bezopasnost' na transporte. Available at: http://www.ibtrans.ru/upload/iblock/252/25224179d2f031147bf4a113e91b4411.pdf
  8. Mehov, V., Sposhnikov, V., Spozhnikov, V. I., Urganskov, D. (2007). Concurrent Error Detection Based on Modulo Weight-Based Codes. Proceedings of 7th IEEE East-West Design & Test Workshop (EWDTW' 2007). Erevan, Armenia, 21–26.
  9. Gorelik, A. V., Taradin, N. A., Veselova, A. S. (2014). Model otsenki nadYozhnosti i effektivnosti funktsionirovaniya ob'ektov transportnoy infrastrukturyi. Nauka i tehnika transporta, 1, 88–92.
  10. Sigorskiy, V. P. (1977). Matematicheskiy apparat inzhenera. Kyiv: Tehnika, 768.
  11. Moiseienko, V. I., Chehodaiev, B. V., Zotova, O. S. (2014). Methods of diagnosis of railway automation systems. Informatsiino-keruiuchi systemy na zaliznychnomu transporti, 4, 26–32.
  12. Panchenko, S., Siroklyn, I., Lapko, A., Kameniev, A., Zmii, S. (2016). Improvement of the accuracy of determining movement parameters of cuts on classification humps by methods of video analysis. Eastern-European Journal of Enterprise Technologies, 4 (3 (82)), 25–30. doi: 10.15587/1729-4061.2016.76103
  13. Tang, L. (2015). Reliability assessments of railway signaling systems: A comparison and evaluation of approaches. Trondheim: Norwegian University of Science and Technology, 81.
  14. Watanabe, Y., Matsumoto, Y. (2014). Online Failure Prediction in Cloud Datacenters. Fujitsu scientific & technical journal, 50 (1), 67–71.
  15. Svendsen, P. A. (2011). Online Failure Prediction in UNIX Systems. Kristiansand: University of Agder, 70.
  16. Kumar, R., Vijayakumar, S., Ahamed, S. (2013). Pat. No. US 2015/0067410 A1. Hardware failure prediction system. USA CPК G06F 11/004. No. US 14/144,823; declareted: 31.12.2013; published: 05.03.2015, 14.
  17. Gavrilyuk, E. A., Mantserov, S. A., Panov, A. Yu. (2015). The failure prediction of automatic gas-compressor unit control systems on basis of technical state index and measure of risk. Fundamentalnyie issledovaniya, 7, 309–313.
  18. Kovalev, A. V., Trushin, N. N., Salnikov, V. S. (2014). Prognozirovanie tehnicheskogo sostoyaniya tehnologicheskogo oborudovaniya. Izvestiya Tulskogo gosudarstvennogo universiteta. Tehnicheskie nauki, 11, 554–559.
  19. Efanov, D. V. (2016). Becoming and development prospects of concurrent error detection and monitoring systems of railway automation and remote control devices. Avtomatika na transporte, 2 (1), 124–148.
  20. Sansevich, V. K. (1996). Klassifikatsiya situatsiy na osnove otnosheniy mezhdu raznorodnyimi priznakami. Sbornik nauchnyih trudov. Orel: VIPS, 6, 53–57.
  21. Schut, D., Wisniewski, J. (2015). A global vision of railway development. Paris: International Union of Railways (UIC), 44.
  22. Pereira, J., Teixeira, P., Viegas, J. (2015). RAMS analysis of railway track infrastructure (Reliability, Availability, Maintainability, Safety). Paris: International Union of Railways (UIC), 44.
  23. Stewart, C., Luebkeman, C., Morrell, M., Goulding, L. (2015). Future of Rail 2050. London: Arup, 58.
  24. Kamenev, A. Yu. (2014). Reliability of combined proofs methods of microprocessor interlocking system of railway stations. Sovremennyie problemyi transportnogo kompleksa Rossii, 4 (5), 61–66.
  25. Kameniev, O. Yu., Moiseienko, V. I., Haievskyi, V. V. (2016). Prohnozuvannia stanu mikroelektronnykh prystroiv zaliznychnoi avtomatyky pry obmezhenykh statystychnykh danykh. Informatsiino-keruiuchi systemy na zaliznychnomu transporti. Chornomorsk, 4, 37.
  26. Kustov, V. F., Kamenev, A. Yu. (2013). Usovershenstvovanie metodov ispyitaniy mikroprotsessornoy tsentralizatsii na bezopasnost primeneniya. Aktualnyie voprosyi razvitiya sistem zheleznodorozhnoy avtomatiki i telemehaniki, 103–118.
  27. Doslidzhennia funktsiinoi bezpechnosti ta elektromahnitnoi sumisnosti mikroprotsesornoi systemy elektrychnoi tsentralizatsii stantsii «Vuhilna» na etapi imitatsiinykh ta stendovykh vyprobuvan (2012). UkrDAZT. No. derzh. reyestr. 0112U006925; inv. No. 0713U007283, 139.

Downloads

Published

2017-06-15

How to Cite

Moiseenko, V., Kameniev, O., & Gaievskyi, V. (2017). Predicting a technical condition of railway automation hardware under conditions of limited statistical data. Eastern-European Journal of Enterprise Technologies, 3(9 (87), 26–35. https://doi.org/10.15587/1729-4061.2017.102005

Issue

Section

Information and controlling system