Development of a bootstrap-model for determining the release of medicinal preparations in the human organism

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.102182

Keywords:

bootstrap-simulation, spline, interpolation, profile of the release in vivo, Trizipin-Long, distribution function

Abstract

We developed a bootstrap-model for evaluating the release kinetics of medicines in the organism and its computer realization. The model is based on the interpolation of experimental data for the release at pH 1.2; 4.5 and 6.8 by the linear and cubic splines and the use in the simulation of dissolution in the organism by passing the zones with the indicated pH values. The profile of the release is considered to be a random process, realized in separate points of time.

In order to perform the bootstrap-simulation of a pseudo-profile of the release in the organism, we generated a spline-pseudo-profile of dissolution at pH 1.2 (imitation of stomach); by using it, we determined mass of the released preparation in 2 hours. Employing the data obtained, we built a spline-pseudo-profile of dissolution at pH 4.5 (duodenum), which matches a residual amount of the preparation. Next, in a similar way, we constructed a spline-pseudo-profile, corresponding to a residual quantity of the preparation, and determined the release at pH 6.8 (small intestine).

The method devised is demonstrated on the example of the simulation of the release kinetics of the preparation Trizipin Long in the organism based on results of the release kinetics in vitro. The model makes it possible to estimate the mean profile, spread and confidence interval of the release. It is established according to results of the simulation that the release of the preparation Trizipin Long from a tablet of mass 1000 mg in the organism in 14 hours makes up on average 870 mg and, with a probability of 0.95, could be within the range from 788 to 946 mg.

The advantage of the developed approach is its universality, as the method is not linked to any particular physical model of the dissolution and the release.

Author Biographies

Alexandr Chorny, Research and Production Company "Microkhim" Volodymyrs'ka str., 33, Rubizhne, Ukraine, 93009

Postgraduate student 

Roman Savyak, Research and Production Company "Microkhim" Volodymyrs'ka str., 33, Rubizhne, Ukraine, 93009

PhD, Associate Professor

Sergej Kondratov, Institute of Chemical Technology Volodymir Dahl East-Ukrainian National University Volodymyrs'ka str., 31, Rubizhne, Ukraine, 93009

Doctor of Chemical Sciences, Professor

Department of mathematics and computer technologies

References

  1. Derzhavna Farmakopeya Ukrayiny. Vol. 1 (2015). Kharkiv: Derzhavne pidpryyemstvo «Ukrayins'kyy naukovyy farmakopeynyy tsentr yakosti likars'kykh zasobiv», 1128.
  2. Chuyeshov, V. I., Chernov, M. U., Khokhlova, L. M. (2002). Promyshlennaya tekhnologiya lekarstv. Vol. 2. Kharkiv: MTK-Knyha, 716.
  3. Kimko, H. C., Duffull, S. B. (Eds.) (2003). Simulation for Designing Clinical Trials. A Pharmacokinetic-Pharmacodynamic Modeling Perspective. New York: Marcel Dekker, Inc, 396.
  4. Smekhova, I. E., Perova, Y. M., Kondratieva, I. A., Rodygina, A. N., Turetskova, N. N. (2013). Dissolution test and modern approaches to drug equivalence assessment (review). Development and registration of medicinal products, 1, 50–61.
  5. Gao, Z. (2009). In Vitro Dissolution Testing with Flow-Through Method: A Technical Note. AAPS PharmSciTech, 10 (4), 1401–1405. doi: 10.1208/s12249-009-9339-6
  6. Heng, D., Cutler, D. J., Chan, H.-K., Yun, J., Raper, J. A. (2008). What is a Suitable Dissolution Method for Drug Nanoparticles? Pharmaceutical Research, 25 (7), 1696–1701. doi: 10.1007/s11095-008-9560-0
  7. Klein, S. (2010). The Use of Biorelevant Dissolution Media to Forecast the In Vivo Performance of a Drug. The AAPS Journal, 12 (3), 397–406. doi: 10.1208/s12248-010-9203-3
  8. Okumu, A., DiMaso, M., Lobenberg, R. (2008). Dynamic Dissolution Testing To Establish In Vitro/In Vivo Correlations for Montelukast Sodium, a Poorly Soluble Drug. Pharmaceutical Research, 25 (12), 2778–2785. doi: 10.1007/s11095-008-9642-z
  9. Dash, S., Murthy, P. N., Nath, L., Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica and Drug Research, 67 (3), 217–223.
  10. Maggio, R. M., Castellano, P. M., Kaufman, T. S. (2009). PCA-CR analysis of dissolution profiles. A chemometric approach to probe the polymorphic form of the active pharmaceutical ingredient in a drug product. International Journal of Pharmaceutics, 378 (1-2), 187–193. doi: 10.1016/j.ijpharm.2009.05.037
  11. Lao, L. L., Peppas, N. A., Boey, F. Y. C., Venkatraman, S. S. (2011). Modeling of drug release from bulk-degrading polymers. International Journal of Pharmaceutics, 418 (1), 28–41. doi: 10.1016/j.ijpharm.2010.12.020
  12. Siepmann, J., Siepmann, F. (2008). Mathematical modeling of drug delivery. International Journal of Pharmaceutics, 364 (2), 328–343. doi: 10.1016/j.ijpharm.2008.09.004
  13. Siepmann, J., Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 161 (2), 351–362. doi: 10.1016/j.jconrel.2011.10.006
  14. Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., Xie, S. (2010). DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. The AAPS Journal, 12 (3), 263–271. doi: 10.1208/s12248-010-9185-1
  15. De Boor, C. (2001). A practical guide to splines. Vol. 27. Applied Mathematical Sciences. New York: Springer-Verlag, 366.
  16. Efron, B. (1988). Netraditsionnyye metody mnogomernogo statisticheskogo analiza. Мoscow: Finansy i statistika, 263.
  17. Ahn, B.-J., Yim, D.-S. (2009). Comparison of Parametric and Bootstrap Method in Bioequivalence Test. The Korean Journal of Physiology and Pharmacology, 13 (5), 367. doi: 10.4196/kjpp.2009.13.5.367
  18. Williams, P. J., Kim, Y. H. (2007). Resampling Techniques and Their Application to Pharmacometrics. Pharmacometrics: The science of quantitative pharmacology. New York: J. Wiley, 401–419. doi: 10.1002/9780470087978.ch15
  19. Mager, H., Goller, G. (1998). Resampling Methods in Sparse Sampling Situations in Preclinical Pharmacokinetic Studies. Journal of Pharmaceutical Sciences, 87 (3), 372–378. doi: 10.1021/js970114h
  20. Orlov, A. I. (2003). O proverke odnorodnosti dvukh nezavisimykh vyborok. Zavodskaya laboratoriya, 69 (1), 55–60.

Downloads

Published

2017-06-08

How to Cite

Chorny, A., Savyak, R., & Kondratov, S. (2017). Development of a bootstrap-model for determining the release of medicinal preparations in the human organism. Eastern-European Journal of Enterprise Technologies, 3(6 (87), 43–49. https://doi.org/10.15587/1729-4061.2017.102182

Issue

Section

Technology organic and inorganic substances