Development of a system to control the motion of electric transport under conditions of iron-ore mines

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.103716

Keywords:

dynamic forces, wagon coupling, eigenvalues, control constraints, breaking distance

Abstract

Based on the study of properties of an electric train as a control object, it has been proven that considerable speed fluctuations and shock loads caused by the presence of elasticity and gaps in the coupling devices take place during the train acceleration and stoppage. These loads cause current fluctuations in armature of the traction DС motors of electric locomotives, which adversely affects their service life. By studying the mathematical description of the dynamic system consisting of an electric locomotive and a set of wagons, a model was synthesized that allows one to investigate the processes taking place in this system when motion and coupling device parameters alter.

On the basis of the mathematical dependencies obtained, an algorithm was developed that enables parametric optimization of the system from the point of view of minimizing collisions of the train wagons during acceleration and braking. A characteristic feature of the algorithm that distinguishes it from existing ones is that the "locomotive – wagons" complex is considered with taking into account presence of elastic coupler and gaps between the train elements. The problem of eliminating dynamic loads caused by oscillating processes of the "locomotive – wagons" complex was solved which made it possible to conduct an analytical construction of a system for optimal control of the material handling processes of electric transport in conditions of iron ore mines. Application of this system makes it possible to optimally perform high-speed loading of wagons with raw materials and their unloading. It is expected that application of this approach thru shortening the time spent in shifting the wagons for their loading will increase productivity of the mine transport by 20–30 %

Author Biographies

Oleg Sinchuk, Kryvyi Rih National University Vitaliy Matusevych str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor, Head of Department

Department of automation electromechanical systems in the industry and vehicles

Igor Kozakevich, Kryvyi Rih National University Vitaliy Matusevych str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of automation electromechanical systems in the industry and vehicles

Vladislav Fedotov, Kryvyi Rih National University Vitaliy Matusevych str., 11, Kryvyi Rih, Ukraine, 50027

Senior Lecturer

Department of automation electromechanical systems in the industry and vehicles

Albert Somochkyn, Kryvyi Rih National University Vitaliy Matusevych str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of automation electromechanical systems in the industry and vehicles

Vadim Serebrenikov, Donetsk National University of Economics and Trade named after M. I. Tugan-Baranovsky Tramvayna str., 16, Kryvyi Rih, Ukraine, 50005

PhD, Associate Professor

Department of higher mathematics and information systems

References

  1. Shydlovskyy, A. K., Pivnyak, H. H., Rohoza, M. V. (2007). Heoekonomika ta heopolityka Ukrayiny. Dnipropetrovsk: Natsional'nyy hirnychyy universytet, 282.
  2. Babets', Ye. S., Mel'nykova, I. Ye., Hrebenyuk, S. Ya., Lobov, S. P.; Babets', Ye. S. (Ed.) (2015). Doslidzhennya tekhniko-ekonomichnykh pokaznykiv hirnychodobuvnykh pidpryyemstv Ukrayiny ta efektyvnosti yikh roboty v umovakh zminnoyi kon"yuktury svitovoho rynku zalizorudnoyi syrovyny. Kryvyy Rih: vyd. R. A. Kozlov, 391.
  3. Babec, E. K., Shtan'ko, L. A., Salganik, V. A., Mel'nikova, I. E. et. al. (2011). Sbornik tekhniko-ehkonomicheskih pokazateley gornodobyvayushchih predpriyatiy Ukrainy v 2009–2010 gg.: Analiz mirovoy kon"yunktury rynka ZHRS 2004–2011 gg. Krivoy Rog: Vidavnichiy dіm, 329.
  4. Dechevsky, L. T., Sziebig, G., Korondi, P. (2016). Optimizing the automation of an iron ore production line – A case study, Part I: Optimal automated logistics. 2016 IEEE International Power Electronics and Motion Control Conference (PEMC). doi: 10.1109/epepemc.2016.7752087
  5. Dechevsky, L. T., Sziebig, G., Korondi, P. (2016). Optimizing the automation of an iron ore production line – A case study, part II: Optimal automated quality control. 2016 IEEE International Power Electronics and Motion Control Conference (PEMC). doi: 10.1109/epepemc.2016.7752088
  6. Yang, L., He, Z. (2016). Game and Strategy of China in the World's Negotiation of Iron Ore Price. 2016 International Conference on Industrial Informatics – Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII). doi: 10.1109/iciicii.2016.0092
  7. Sinchuk, O. N., Sinchuk, I. O., Chernaya, V. O. (2012). Protection system of AC mine electric locomotive from the emergencies. Russian Electrical Engineering, 83 (4), 225–229. doi: 10.3103/s1068371212040116
  8. Sinchuk, O., Kozakevich, I., Kalmus, D., Siyanko, R. (2017). Examining energy-efficient recuperative braking modes of traction asynchronous frequency-controlled electric drives. Eastern-European Journal of Enterprise Technologies, 1 (1 (85)), 50–56. doi: 10.15587/1729-4061.2017.91912
  9. Debelyy, V. L., Debelyy, L. L., Mel'nikov, S. A. (2006). Osnovnye napravleniya razvitiya shahtnogo lokomotivnogo transporta. Ugol' Ukrainy, 6, 30–31.
  10. Bundell, G. A. (2010). Application of a max-min-plus discrete event model to the operation of a heavy-haul iron-ore railway. The 7th International conference on informatics and systems, 1–10.
  11. Ferrer-Coll, J., Angskog, P., Chilo, J., Stenumgaard, P. (2012). Characterisation of electromagnetic properties in iron-mine production tunnels. Electronics Letters, 48 (2), 62. doi: 10.1049/el.2011.3133
  12. Ekman, J., Wisten, A. (2009). Experimental Investigation of the Current Distribution in the Couplings of Moving Trains. IEEE Transactions on Power Delivery, 24 (1), 311–318. doi: 10.1109/tpwrd.2008.2005668
  13. Pu Guangyue, Wu Jiande, An Jian, Wang Jian, Ba Haibo, Wang Xiaodong. (2010). The design and application of the ore pulp water treatment in pipeline transport of refined iron ore. 2010 Third International Symposium on Knowledge Acquisition and Modeling. doi: 10.1109/kam.2010.5646215
  14. Kozakevych, I. A. (2014). Adaptyvnyy sposib kompensatsiyi neliniynykh vlastyvostey invertora napruhy dlya bezdatchykovoho vektornoho keruvannya na nyz'kykh chastotakh obertiv. Elektromekhanichni i enerhozberihayuchi systemy, 1, 19–25.
  15. Djeghader, Y., Zellouma, L., Labar, H., Toufouti, R., Chelli, Z. (2015). Study and filtering of harmonics in a DC electrified railway system. 2015 7th International Conference on Modelling, Identification and Control (ICMIC). doi: 10.1109/icmic.2015.7409469
  16. Osadchuk, Yu. H., Kozakevych, I. A., Sinchuk, I. O. (2010). Alhorytm kompensatsiyi efektu "mertvoho chasu" v tr'okhrivnevykh invertorakh napruhy. Elektromekhanichni i enerhozberihayuchi systemy, 1, 38–41.
  17. Semenov, A. D., Artamonov, D. V., Bryuhachev, A. V. (2003). Identifikaciya ob"ektov upravleniya. Penza: Izd-vo Penz. gos. un-ta, 211.
  18. Kozakevych, I. A. (2014). Doslidzhennya adaptyvnykh system dlya bezdatchykovoho keruvannya asynkhronnymy dvyhunamy pry roboti na nyz'kykh chastotakh obertiv. Problemy enerhoresursozberezhennya v elektrotekhnichnykh systema. Nauka, osvita i praktyka, 1, 29–31.
  19. Panteleev, A. V., Bartakovskiy, A. S. (2003). Teoriya upravleniya v primerah i zadachah. Moscow: Vyssh. shk., 583.
  20. Sinchuk, O. M., I. A. Kozakevych, D. O. Shvydkyy (2014). Analiz sposobiv pokrashchennya dynamichnykh vlastyvostey asynkhronnykh elektropryvodiv zi skalyarnym keruvannyam. Yakist' mineral'noyi syrovyny, 428–432.
  21. Kanellakis, C., Nikolakopoulos, G. (2016). Evaluation of visual localization systems in underground mining. 2016 24th Mediterranean Conference on Control and Automation (MED). doi: 10.1109/med.2016.7535853
  22. Kozakevich, I. A. (2014). Issledovanie adaptivnogo nablyudatelya polnogo poryadka dlya nizkih uglovyh skorostey dvigatelya. Perspektyvy rozvytku suchasnoyi nauky. Kherson: Vydavnychyy dim "Hel'vetyka", 65–67.
  23. Schneider, S., Melkumyan, A., Murphy, R. J., Nettleton, E. (2012). A geological perception system for autonomous mining. 2012 IEEE International Conference on Robotics and Automation. doi: 10.1109/icra.2012.6224761
  24. Stepanov, V. V. (2004). Kurs differencial'nyh uravneniy. Moscow: Nauka, 473.

Downloads

Published

2017-06-30

How to Cite

Sinchuk, O., Kozakevich, I., Fedotov, V., Somochkyn, A., & Serebrenikov, V. (2017). Development of a system to control the motion of electric transport under conditions of iron-ore mines. Eastern-European Journal of Enterprise Technologies, 3(2 (87), 39–47. https://doi.org/10.15587/1729-4061.2017.103716