Development of sanitary-safe poultry paste products with balanced fatty acid and vitamin composition

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.103913

Keywords:

meat pastes, vitaminized blended vegetable oils, protein-fat emulsions, poultry meat, sanitary-hygienic safety

Abstract

Development of original recipes of meat pastes enriched with biologically active components due to the use of vitaminized blended vegetable oils (VBVO) and protein-fat emulsions (PFE) on their basis for general and special nutrition was considered. In the process of this work, eight recipes of chicken and turkey meat paste were developed using PFEs which were included in the recipe in an amount of 15...20 % and two recipes with vitaminized blended vegetable oils of two-component and three-component compositions in an amount of 10 %. Samples of the pastes prepared according to DStU 4432:2005, which contained 10 % of slab bacon were taken as reference samples.

A complex of organoleptic, physico-chemical, biochemical, functional-technological, structural-mechanical, sanitary-hygienic and medico-biological studies of the new meat paste recipes has been carried out. By way of mathematical modeling, yield of products with a balanced composition was optimized depending on the amount of protein-fat emulsion and vitaminized blended vegetable oil and the type of protein in minced meat. Composition of vegetable oils has been developed and their fatty acid composition and content of fat-soluble vitamins in them were determined by gas chromatographic method

Modern molecular genetic methods have been applied for an accelerated diagnosis of paste safety concerning the regulated spore-forming food poisoning agents such as Clostridium perfringens and Bacillus cereus, the quantity of mesophilic aerobic and facultative anaerobic microorganisms (QMAFAnM), Coliform bacteria or Bacteria of Group of Escherichia Coli (BGEC) bacteria of intestinal stem group (BISG), sulfite-reducing clostridia, Staphylococcus aureus, L. monocytogenes and Salmonella. Shelf life of meat pastes was doubled (up 48 hours) while DStU 4432:2005 specifies 24 hours. Expediency of their introduction in production was proven

Author Biographies

Yevhenii Kotliar, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD

Department of technology of milk, fats and perfume and kosmetycheskyh funds

Oksana Topchiy, National university of food technologies Volodymyrska str., 68, Kyiv, Ukraine, 01601

PhD, Associate Professor

Department of meat and meat products technology

Liudmyla Pylypenko, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor

Department of Biochemistry, Microbiology and Physiology of Nutrition

Inna Pуlуpenko, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Biochemistry, Microbiology and Physiology of Nutrition

Elena Sevastyanova, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of technology of milk, fats and perfume and kosmetycheskyh funds

References

  1. Peshuk, L. V., Karpenko, O. P. (2005). Perspektyva rozrobky spetsial'nykh produktiv kharchuvannya na m'yasniy osnovi. Myasnoy biznes, 2, 14–15.
  2. Pro yakist' ta bezpeku kharchovykh produktiv ta prodovol'choyi syrovyny (2005). Verkhovna Rada Ukrayiny, No. 2809-IV.
  3. Jimenez-Colmenero, F. (2007). Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends in Food Science & Technology, 18 (11), 567–578. doi: 10.1016/j.tifs.2007.05.006
  4. Astley, S. B., Elliott, R. M. (2007). The European Nutrigenomics Organisation: linking genomics, nutrition and health research. Journal of the Science of Food and Agriculture, 87 (7), 1180–1184. doi: 10.1002/jsfa.2791
  5. Bretillon, L., Acar, N., Berdeaux, O., Bron, A., Creuzot-Garcher, C. (2010). Lipid nutrition and eye health. Lipid Technology, 22 (6), 130–133. doi: 10.1002/lite.201000028
  6. Ruiz-Samblas, C., Marini, F., Cuadros-Rodríguez, L., Gonzalez-Casado, A. (2012). Quantification of blending of olive oils and edible vegetable oils by triacylglycerol fingerprint gas chromatography and chemometric tools. Journal of Chromatography B, 910, 71–77. doi: 10.1016/j.jchromb.2012.01.026
  7. Simakhina, H. O. (2010). Kontseptsiya ozdorovchoho kharchuvannya ta shlyakhy yiyi realizatsiyi. Naukovi pratsi NUKhT, 33, 10–13.
  8. Mohamed, K. M., Elsanhoty, R. M., Hassanien, M. F. R. (2013). Improving Thermal Stability of High Linoleic Corn Oil by Blending with Black Cumin and Coriander Oils. International Journal of Food Properties, 17 (3), 500–510. doi: 10.1080/10942912.2012.654560
  9. Topchiy, O. A., Kotlyar, Ye. O. (2015). Principles of blending fatty acid balanced vegetable oils. Eastern-European Journal of Enterprise Technologies, 1 (6 (73)), 26–32. doi: 10.15587/1729-4061.2015.35997
  10. Kotlyar, Y., Goncharenko, Т., Topchiy, O. (2016). Development of formulation multicomponent protein-fat emulsion. Food science and technology, 10 (4). doi: 10.15673/fst.v10i4.250
  11. Sebranek, J. G., Sewalt, V. J. H., Robbins, K. L., Houser, T. A. (2005). Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Science, 69 (2), 289–296. doi: 10.1016/j.meatsci.2004.07.010
  12. Smith, J., Charter, E. (Eds.) (2010). Functional food product development. Wiley-Blackwell: Oxford, 528. doi: 10.1002/9781444323351
  13. Borchers, A., Teuber, S. S., Keen, C. L., Gershwin, M. E. (2009). Food Safety. Clinical Reviews in Allergy & Immunology, 39 (2), 95–141. doi: 10.1007/s12016-009-8176-4
  14. Rounds, L., Havens, C. M., Feinstein, Y., Friedman, M., Ravishankar, S. (2012). Plant Extracts, Spices, and Essential Oils Inactivate Escherichia coli O157:H7 and Reduce Formation of Potentially Carcinogenic Heterocyclic Amines in Cooked Beef Patties. Journal of Agricultural and Food Chemistry, 60 (14), 3792–3799. doi: 10.1021/jf204062p
  15. Caballero, B. (2005). Encyclopedia of human nutrition. Academic Press, 2168.
  16. Fogliano, V., Vitaglione, P. (2005). Functional foods: Planning and development. Molecular Nutrition & Food Research, 49 (3), 256–262. doi: 10.1002/mnfr.200400067
  17. Kaprel'yanc, L. V., Homich, G. A. (2012). Funkcional'nye produkty: tendencii i perspektivy. Food science and technology, 4, 5–8.
  18. Mohamed, K. M., Elsanhoty, R. M., Hassanien, M. F. R. (2013). Improving Thermal Stability of High Linoleic Corn Oil by Blending with Black Cumin and Coriander Oils. International Journal of Food Properties, 17 (3), 500–510. doi: 10.1080/10942912.2012.654560
  19. Topchiy, O. A., Kotlyar, Ye. O., Tymchenko, D. O. (2013). Pat. No. 85607 UA. Pashtet m'yasnyy zapechenyy «Osoblyvyi». MPK A23L 1/100 (2013.01). No. u2013 06739; declareted: 29.05.2013; published: 25.11.2013, Bul. No. 22, 4.
  20. Dzhey, Dzh. M., Lyossner, M. Dzh., Gol'den, D. A. (2011). Sovremennaya pishchevaya mikrobiologiya. Moscow: BINOM. Laboratoriya znaniy, 886.
  21. Pilipenko, I. V. (2015). Clostridium perfringens: characterization, biological activity, the indication in food. Technology audit and production reserves, 2 (4 (22)), 4–8. doi: 10.15587/2312-8372.2015.39107
  22. Bottone, E. J. (2010). Bacillus cereus, a Volatile Human Pathogen. Clinical Microbiology Reviews, 23 (2), 382–398. doi: 10.1128/cmr.00073-09
  23. Dohmae, S., Okubo, T., Higuchi, W., Takano, T., Isobe, H., Baranovich, T. et. al. (2008). Bacillus cereus nosocomial infection from reused towels in Japan. Journal of Hospital Infection, 69 (4), 361–367. doi: 10.1016/j.jhin.2008.04.014
  24. Dierick, K., Van Coillie, E., Swiecicka, I., Meyfroidt, G., Devlieger, H., Meulemans, A. et. al. (2005). Fatal Family Outbreak of Bacillus cereus-Associated Food Poisoning. Journal of Clinical Microbiology, 43 (8), 4277–4279. doi: 10.1128/jcm.43.8.4277-4279.2005
  25. Kotliar, Y., Topchiy, O., Pylypenko, L., Pуlуpenko, I., Sevastіanova, E. (2017). Complex of chemical-technological and sanitary-hygienic quality indicators of the new pastry products of special nutrition. EUREKA: Life Sciences, 3, 35–42. doi: 10.21303/2504-5695.2017.00363
  26. Pylypenko, I., Pylypenko, L., Sevastyanova, E., Kotlyar, E., Kruchek , R. (2016). Epiphytic and regulated microbial contaminants of food vegetable raw materials and products. Ukrainian Food Journal, 5 (2), 272–280. doi: 10.24263/2304-974x-2016-5-2-6
  27. Melngaile, A. (2008). Microbiological risk analysis in public catering establishments. Jelgava, 64.
  28. Yamborko, H. V., Ostapchuk, A. M., Serhyeyeva, Zh. Yu., Pylypenko, L. M., Pylypenko, I. V. (2017). Chemotaxonomic features and plasmid profiles of aerobic and facultative anaerobic spore-forming bacteria from vegetables. Microbiology&Biotechnology, 1 (37), 56–72. doi: 10.18524/2307-4663.2017.1(37).96576
  29. Sava, V. M., Pylypenko, L. M., Pylypenko, I. V. (2014). Pat. No. 111266 UA. Sposib vyznachennya Clostridium perfringens kharchovykh produktakh. S2 MPK (2016.01). No. a201409534; declareted: 29.08.2014; published: 11.04.2016, Bul. No. 7.

Downloads

Published

2017-06-30

How to Cite

Kotliar, Y., Topchiy, O., Pylypenko, L., Pуlуpenko I., & Sevastyanova, E. (2017). Development of sanitary-safe poultry paste products with balanced fatty acid and vitamin composition. Eastern-European Journal of Enterprise Technologies, 3(11 (87), 61–70. https://doi.org/10.15587/1729-4061.2017.103913

Issue

Section

Technology and Equipment of Food Production