Examining the effect of electrosynthesis conditions on the Ni-P alloy composition

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.106900

Keywords:

electrosynthesis, Ni–P alloy, methanesulfonate electrolyte, buffer properties, phosphorus formation

Abstract

The Ni–P alloys are widely used as catalysts, magnetic and wear resistant materials. Properties of the nickel-phosphorous alloys are defined by the composition. A highly regulated technique to obtain the alloys with specified composition is the electrosynthesis. It is a relevant task to establish dependences of the alloy composition on the process conditions. In the present work we examined the influence of electrolysis parameters on the Ni–P alloy composition, obtained from the methanesulfonate and sulfate electrolytes. It is shown that an increase in the concentration of sodium hypophosphite, acidity and temperature of the electrolyte increases phosphorus content in the alloy. It was established that when carrying out the electrosynthesis under galvanostatic mode, a change in the alloy composition is predetermined by the rate of phosphorus formation. Atomic phosphorus is formed as a result of the course of two reactions. There occurs the electroreduction and disproportionation of hypophosphite-anion involving hydrogen ions. An increase in the concentration of hydrogen ions in the near-electrode layer contributes to an increase in the rate of phosphorus formation and growing phosphorus content in the alloy. That is why the alloys with a higher content of phosphorus are formed at lower pH indices of the electrolyte and at higher temperature. It was established that weak buffer properties of the methanesulfonate electrolyte are responsible for the lowered phosphorus content in the synthesized alloy. High pH index in the near-electrode layer reduces the rate of phosphorus formation. Established regularities might prove very useful when designing new technologies of the Ni–P alloy electrosynthesis of specified composition from the methanesulfonate electrolyte.

Author Biographies

Oleksandra Savchuk, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Postgraduate student

Department of Рhysical chemistry

Yuriy Sknar, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Electrochemical and Environmental Technologies

Irina Sknar, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Devices and General Chemical Technology

Anna Cheremysinova, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Yaroslav Kozlov, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Energetics

References

  1. Zhang, S., Cao, F., Chang, L., Zheng, J., Zhang, Z., Zhang, J., Cao, C. (2011). Electrodeposition of high corrosion resistance Cu/Ni–P coating on AZ91D magnesium alloy. Applied Surface Science, 257 (21), 9213–9220. doi: 10.1016/j.apsusc.2011.06.006
  2. Lee, H. B., Wuu, D. S., Lee, C. Y., Lin, C. S. (2010). Wear and immersion corrosion of Ni–P electrodeposit in NaCl solution. Tribology International, 43 (1-2), 235–244. doi: 10.1016/j.triboint.2009.05.031
  3. Yuan, X., Sun, D., Yu, H., Meng, H., Fan, Z., Wang, X. (2007). Preparation of amorphous-nanocrystalline composite structured Ni–P electrodeposits. Surface and Coatings Technology, 202 (2), 294–300. doi: 10.1016/j.surfcoat.2007.05.040
  4. Yonezu, A., Niwa, M., Ye, J., Chen, X. (2013). Contact fracture mechanism of electroplated Ni–P coating upon stainless steel substrate. Materials Science and Engineering: A, 563, 184–192. doi: 10.1016/j.msea.2012.11.054
  5. Zoikis-Karathanasis, A., Pavlatou, E. A., Spyrellis, N. (2010). Pulse electrodeposition of Ni–P matrix composite coatings reinforced by SiC particles. Journal of Alloys and Compounds, 494 (1-2), 396–403. doi: 10.1016/j.jallcom.2010.01.057
  6. Lin, Y.-C., Duh, J.-G. (2007). Effect of surfactant on electrodeposited Ni–P layer as an under bump metallization. Journal of Alloys and Compounds, 439 (1-2), 74–80. doi: 10.1016/j.jallcom.2006.08.067
  7. Paseka, I. (2008). Hydrogen evolution reaction on Ni–P alloys: The internal stress and the activities of electrodes. Electrochimica Acta, 53 (13), 4537–4543. doi: 10.1016/j.electacta.2008.01.045
  8. Wei, Z. D., Yan, A. Z., Feng, Y. C., Li, L., Sun, C. X., Shao, Z. G., Shen, P. K. (2007). Study of hydrogen evolution reaction on Ni–P amorphous alloy in the light of experimental and quantum chemistry. Electrochemistry Communications, 9 (11), 2709–2715. doi: 10.1016/j.elecom.2007.09.006
  9. Losiewicz, B. (2011). Experimental design in the electrodeposition process of porous composite Ni–P+TiO2 coatings. Materials Chemistry and Physics, 128 (3), 442–448. doi: 10.1016/j.matchemphys.2011.03.028
  10. Liu, J., Wang, F., Zhai, J., Ji, J. (2010). Controllable growth and magnetic characterization of electrodeposited nanocrystalline Ni–P alloy nanotube and nanowire arrays inside AAO template. Journal of Electroanalytical Chemistry, 642 (2), 103–108. doi: 10.1016/j.jelechem.2010.02.017
  11. Kobayashi, S., Kamata, A., Watanabe, T. (2009). Roles of grain boundary microstructure in high-cycle fatigue of electrodeposited nanocrystalline Ni–P alloy. Scripta Materialia, 61 (11), 1032–1035. doi: 10.1016/j.scriptamat.2009.08.021
  12. Suzuki, Y., Arai, S., Endo, M. (2010). Electrodeposition of Ni–P Alloy–Multiwalled Carbon Nanotube Composite Films. Journal of The Electrochemical Society, 157 (1), D50. doi: 10.1149/1.3254180
  13. Lin, C. S., Lee, C. Y., Chen, F. J., Chien, C. T., Lin, P. L., Chung, W. C. (2006). Electrodeposition of Nickel-Phosphorus Alloy from Sulfamate Baths with Improved Current Efficiency. Journal of The Electrochemical Society, 153 (6), C387. doi: 10.1149/1.2186798
  14. Danilov, F. I., Tkach, I. G., Sknar, I. V., Sknar, Y. E. (2014). Ni-Co alloy coatings obtained from methanesulfonate electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 50 (5), 639–642. doi: 10.1134/s2070205114050062
  15. Danilov, F. I., Sknar, I. V., Sknar, Y. E. (2014). Electroplating of Ni-Fe alloys from methanesulfonate electrolytes. Russian Journal of Electrochemistry, 50 (3), 293–296. doi: 10.1134/s1023193514030045
  16. Danilov, F. I., Sknar, I. V., Sknar, Y. E. (2011). Kinetics of nickel electroplating from methanesulfonate electrolyte. Russian Journal of Electrochemistry, 47 (9), 1035–1042. doi: 10.1134/s1023193511090114
  17. Ordine, A. P., Díaz, S. L., Margarit, I. C. P., Barcia, O. E., Mattos, O. R. (2006). Electrochemical study on Ni–P electrodeposition. Electrochimica Acta, 51 (8-9), 1480–1486. doi: 10.1016/j.electacta.2005.02.129
  18. Hansal, W. E. G., Sandulache, G., Mann, R., Leisner, P. (2013). Pulse-electrodeposited NiP–SiC composite coatings. Electrochimica Acta, 114, 851–858. doi: 10.1016/j.electacta.2013.08.182
  19. Zhou, X., Shen, Y., Jin, H., Zheng, Y. (2012). Microstructure and depositional mechanism of Ni–P coatings with nano-ceria particles by pulse electrodeposition. Transactions of Nonferrous Metals Society of China, 22 (8), 1981–1988. doi: 10.1016/s1003-6326(11)61417-9
  20. Chen, F. J., Pan, Y. N., Lee, C. Y., Lin, C. S. (2010). Internal Stress Control of Nickel–Phosphorus Electrodeposits Using Pulse Currents. Journal of The Electrochemical Society, 157 (3), D154. doi: 10.1149/1.3285108
  21. Mahalingam, T., Raja, M., Thanikaikarasan, S., Sanjeeviraja, C., Velumani, S., Moon, H., Kim, Y. D. (2007). Electrochemical deposition and characterization of Ni–P alloy thin films. Materials Characterization, 58 (8-9), 800–804. doi: 10.1016/j.matchar.2006.11.023
  22. Sotskaya, N. V., Dolgikh, O. V. (2005). Kinetics of Cathodic Reduction of Hypophosphite Anions in Aqueous Solutions. Russian Journal of Electrochemistry, 41 (12), 1336–1340. doi: 10.1007/s11175-005-0223-8

Downloads

Published

2017-08-22

How to Cite

Savchuk, O., Sknar, Y., Sknar, I., Cheremysinova, A., & Kozlov, Y. (2017). Examining the effect of electrosynthesis conditions on the Ni-P alloy composition. Eastern-European Journal of Enterprise Technologies, 4(6 (88), 41–46. https://doi.org/10.15587/1729-4061.2017.106900

Issue

Section

Technology organic and inorganic substances