Modeling of daily temperature mode in premises using a predictive controller
DOI:
https://doi.org/10.15587/1729-4061.2017.108574Keywords:
simulation of thermal field of premises, predictive controller, pulse-width modulation (PWM), PWM control, heat supply to office buildingAbstract
The goal of present work is to decrease electric power consumption in a building employing the developed control method that uses a prediction filter. To accomplish this goal, a model of the premises was constructed in the ANSYS Fluent software and a PWM predictive controller was synthesized. Modeling of daily state of the premises with maintenance of assigned temperature using the predictive controller, a two-position controller and a PID-control was performed. Results of modeling demonstrate that the use of predicting controller, taking into account parameters of the building, heating and ventilation systems, outdoor air temperature with maintaining minimal permissible operating air temperature in the premises at night, at weekends and on holidays, makes it possible to save heat resources. Refusal from continuous control and transition to the PWM predictive controller demonstrated a decrease in operating time of heating equipment by 2.3 times from 24 to 10.5 hours. The proposed control method showed the best controlling accuracy equal to 5 %, compared to a two-position control with hysteresis and a PID-control.
References
- Mirovyie tendentsyi povyisheniya energoeffektivnosti zdaniy (2012). Energosberezhenie, 5, 38–42.
- Seppanen, O. (2013). Povyishenie energoeffektivnosti. Zakonodatelstvo ES. Zdaniya vyisokih tehnologiy. Available at: http://zvt.abok.ru/articles/80/Povishenie_energoeffektivnosti_Zakonodatelstvo_ES
- Direktiva Evropeyskogo parlamenta i Soveta 2010/31/EC ot 19 maya 2010 goda ob energosberezheniy zdaniy (2010). Оfitsialniy vestnik Evropeyskogo Soyuza. Available at: http://esco.agency/ru/library/directive_2010_31_EC_rus.pdf
- Energetichna strategiya Ukrayini na period do 2035 roku. Available at: http://mpe.kmu.gov.ua/minugol/doccatalog/document?id=244979237
- Savytskyi, S. M., Hapon, A. I., Kachanov, P. O., Yevseienko, O. M., Vyskrebentsev, V. O. (2013). Pat. No. 81276 UA. Sposib prohramnoho upravlinnia teplovym obiektom z zastosuvanniam shyrotno-impulsnoi moduliatsyi. MPK G05D 23/19 (2006.01). No. u201300059; declareted: 02.01.2013; published: 25.06.2013, Bul. No. 12, 4.
- Rotov, P. V. (2011). Sposobyi regulirovaniya teplovoy nagruzki sistem teplosnabzheniya. Perspektivyi razvitiya. ESKO, 10. Available at: http://www.journal.esco.co.ua/2011_10/art069.htm
- Degtyar, A. B., Panferov, V. I. (2008). Postroenie algoritma impulsnogo otopleniya zdaniy i issledovanie rezhimov ego raboty. Vestnik YuUrGU. Seriya: Kompyuternyie tehnologiy, upravlenie, radioelektronika, 8 (17 (117)), 41–44.
- Lee, K.-H., Joo, M.-C., Baek, N.-C. (2015). Experimental Evaluation of Simple Thermal Storage Control Strategies in Low-Energy Solar Houses to Reduce Electricity Consumption during Grid On-Peak Periods. Energies, 8 (9), 9344–9364. doi: 10.3390/en8099344
- Cellucci, G. (2009). Optimize HVAC Controls And Energy Management Systems. Building Automation, 28–29.
- Hart, R. (2012). Advanced unitary HVAC control sequence. ASHRAE Trans, 118 (1), 628–635.
- Afram, A., Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment, 72, 343–355. doi: 10.1016/j.buildenv.2013.11.016
- Jin, G.-Y., Tan, P.-Y., Ding, X.-D., Koh, T.-M. (2011). Cooling Coil Unit dynamic control of in HVAC system. 2011 6th IEEE Conference on Industrial Electronics and Applications. doi: 10.1109/iciea.2011.5975722
- Moradi, H., Saffar-Avval, M., Bakhtiari-Nejad, F. (2011). Nonlinear multivariable control and performance analysis of an air-handling unit. Energy and Buildings, 43 (4), 805–813. doi: 10.1016/j.enbuild.2010.11.022
- Anderson, M., Buehner, M., Young, P., Hittle, D., Anderson, C., Jilin Tu, Hodgson, D. (2008). MIMO Robust Control for HVAC Systems. IEEE Transactions on Control Systems Technology, 16 (3), 475–483. doi: 10.1109/tcst.2007.903392
- Henze, G. P., Felsmann, C., Knabe, G. (2004). Evaluation of optimal control for active and passive building thermal storage. International Journal of Thermal Sciences, 43 (2), 173–183. doi: 10.1016/j.ijthermalsci.2003.06.001
- Huang, G. (2011). Model predictive control of VAV zone thermal systems concerning bi-linearity and gain nonlinearity. Control Engineering Practice, 19 (7), 700–710. doi: 10.1016/j.conengprac.2011.03.005
- Homod, R. Z., Sahari, K. S. M., Almurib, H. A. F., Nagi, F. H. (2012). Gradient auto-tuned Takagi-Sugeno Fuzzy Forward control of a HVAC system using predicted mean vote index. Energy and Buildings, 49, 254–267. doi: 10.1016/j.enbuild.2012.02.013
- Navale, R. L., Nelson, R. M. (2010). Use of evolutionary strategies to develop an adaptive fuzzy logic controller for a cooling coil. Energy and Buildings, 42 (11), 2213–2218. doi: 10.1016/j.enbuild.2010.07.017
- Attia, A.-H., Rezeka, S. F., Saleh, A. M. (2015). Fuzzy logic control of air-conditioning system in residential buildings. Alexandria Engineering Journal, 54 (3), 395–403. doi: 10.1016/j.aej.2015.03.023
- Krukovskiy, P. G., Yurchenko, D. D., Parkhomenko, G. A., Tadlya, O. Yu., Polubinskiy, A. S. (2009). CFD-modelirovanie teplovogo rezhima pomeshcheniya s razlichnymi sistemami otopleniya. Ch. 1. Razrabotka trekhmernykh CFD-modeley v sopryazhennoy postanovke. Promyshlennaya Teplotekhnika, 5, 56–61.
- Yevseienko, O. N., Savitskiy, S. M., Salnikov, D. V. (2014). Poluchenie iskhodnykh dannykh dlya provedeniya eksperimenta po upravleniyu temperaturoy obekta s pomoshchyu ShIM-modulyatsiy i predskazyvayushchego filtra. Fіziko-tekhnologіchnі problemi radіotekhnіchnikh pristroiv, zasobіv telekomunіkatsіy, nano- ta mіkroelektronіki. Сhernivtsi, 165–166.
- Yevseenko, O. N., Kachanov, P. A. (2014). Podderzhanie zadannoy temperatury inertsionnogo obekta s ispolzovaniem ShIM-regulirovaniya s predskazaniem. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Seriya: Avtomatyka ta pryladobuduvannia, 67, 18–28.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Petro Kachanov, Oleg Yevseienko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.