A method of V-function: ultimate solution to the direct and inverse problems of dynamics for a hydrogen-like atom

Authors

  • Nail Valishin Kazan National Research Technical University named after A. N. Tupolev-KAI K. Marksa str., 10, Kazan, Russia, 420111, Russian Federation
  • Sergey Moiseev Kazan Quantum Center KNITU-KAI Kazan National Research Technical University named after A. N. Tupolev-KAI K. Marksa str., 10, Kazan, Russia, 420111, Russian Federation

DOI:

https://doi.org/10.15587/1729-4061.2017.108831

Keywords:

variational principle, direct problem of dynamics, inverse problem of dynamics, optical-mechanical analogy, wave motion, trajectory motion, wave function, wave equation

Abstract

Based on the method of V-function, a continuation of the optical-mechanical analogy is attained. In contrast to classic quantum mechanics, a trajectory-wave motion of the particle is explored. We highlight the presence of energy quantization of the particle and the availability of solution without a particle in the case of rectilinear uniform motion at constant speed. A solution to the direct and inverse problems of dynamics is searched for in a new statement for a hydrogen-like atom. When solving a direct problem, we find a stationary wave function of the electron in a hydrogen-like atom, with its properties investigated. When searching for a final solution to the stationary wave equation, we take into account a solution to the inverse problem of dynamics for the electron. A linear dependence between two particular solutions is shown. The second linearly independent solution is found, decaying exponentially to zero. We present charts of the stationary solution for a wave of the particle (electron) for three lower stationary states. Energy levels of a hydrogen-like atom are determined as a solution to the inverse problem of dynamics, which fully coincide with the classical results by Schrödinger and Bohr. A wave function is regarded as a physical reality, which makes it possible to open up new possibilities in order to study the structure of the microcosm

Author Biographies

Nail Valishin, Kazan National Research Technical University named after A. N. Tupolev-KAI K. Marksa str., 10, Kazan, Russia, 420111

PhD, Associate Professor

Department of Special Mathematics

Sergey Moiseev, Kazan Quantum Center KNITU-KAI Kazan National Research Technical University named after A. N. Tupolev-KAI K. Marksa str., 10, Kazan, Russia, 420111

Doctor of Physical and Mathematical Sciences, Professor

References

  1. Hamilton, W. R. (1834). On a General Method in Dynamics. Philos. Trans., 247–308.
  2. De Broglie, L. (1925). Recherches sur la théorie des Quanta. Annales de Physique, 10 (3), 22–128. doi: 10.1051/anphys/192510030022
  3. Broglie, L. (1967). Kvanty sveta, difrakciya i interferenciya. Kvanty, kineticheskaya teoriya gazov i princip Ferma. Uspekhi Fizicheskih Nauk, 93 (9), 180–181. doi: 10.3367/ufnr.0093.196709j.0180
  4. Broglie, L. (1986). Sootnosheniya neopredelennostey Geyzenberga i veroyatnostnaya interpretaciya volnovoy mekhaniki. Мoscow: Mir.
  5. Schrodinger, E. (1926). Quantisierung als Eigenwertproblem. Annalen Der Physik, 384 (4), 361–376. doi: 10.1002/andp.19263840404
  6. Carmichael, H. (1993). An Open Systems Approach to Quantum Optics. Lecture Notes in Physics Monographs. Springer-Verlag Berlin Heidelberg, 182. doi: 10.1007/978-3-540-47620-7
  7. Mensky, M. B. (1993). Continuous quantum measurements and path integrals. Bristol and Philadelphia: IOP Publishing.
  8. Bloch, A. M., Rojo, A. G. (2016). Optical mechanical analogy and nonlinear nonholonomic constraints. Physical Review E, 93 (2). doi: 10.1103/physreve.93.023005
  9. Abdil’din, M. M., Abishev, M. E., Beissen, N. A., Taukenova, A. S. (2011). On the optical-mechanical analogy in general relativity. Gravitation and Cosmology, 17 (2), 143–146. doi: 10.1134/s0202289311020034
  10. Khan, S. A. (2017). Hamilton's optical-mechanical analogy in the wavelength-dependent regime. Optik – International Journal for Light and Electron Optics, 130, 714–722. doi: 10.1016/j.ijleo.2016.10.112
  11. Valishin, N. T. (2014). Variational principle and the problems dynamics. Life Science Journal, 11 (8), 568–574.
  12. Valishin, N. T. (2016). An Optical-Mechanical Analogy And The Problems Of The Trajectory-Wave Dynamics. Global Journal of Pure and Applied Mathematics, 12 (4), 2935–2951.
  13. Knoll, Y., Yavneh, I. (2006). Coupled wave-particle dynamics as a possible ontology behind Quantum Mechanics and long-range interactions. Cornell University Library. Available at: https://arxiv.org/pdf/quant-ph/0605011v2.pdf
  14. Pang, X. (2011). The wave-corpuscle properties of microscopic particlesin the nonlinear quantum-mechanical systems. Natural Science, 03 (07), 600–616. doi: 10.4236/ns.2011.37083
  15. Matzkin, A., Nurock, V. (2007). Are Bohmian trajectories real? On the dynamical mismatch between de Broglie-Bohm and classical dynamics in semiclassical systems. Cornell University Library. Available at: https://arxiv.org/pdf/quant-ph/0609172v2.pdf
  16. Vaidman, L. (2014). Quantum Theory and Determinism. Cornell University Library. Available at: https://arxiv.org/pdf/1405.4222.pdf
  17. Bohr, N. (1913). I.On the constitution of atoms and molecules. Philosophical Magazine Series 6, 26 (151), 1–25. doi: 10.1080/14786441308634955

Downloads

Published

2017-08-30

How to Cite

Valishin, N., & Moiseev, S. (2017). A method of V-function: ultimate solution to the direct and inverse problems of dynamics for a hydrogen-like atom. Eastern-European Journal of Enterprise Technologies, 4(5 (88), 23–32. https://doi.org/10.15587/1729-4061.2017.108831

Issue

Section

Applied physics