Research of extraction of biologically active substances from grape pomace by the subcritical water

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.108992

Keywords:

grape pomace, biologically active substances, extraction, subcritical water, antioxidant activity

Abstract

The process of extracting biologically active substances from the grape pomace of grape variety Moldova has been studied. The presence of gallic acid and furfural was identified. It is shown that the temperature of the extraction process has the greatest influence on the yield of biologically active substances from grape pomace. The influence of process parameters of extraction (the size of the fraction of dry grape pomace, temperature, pressure, liquid-solid ratio) on the antioxidant activity of the extracts, the yield of dry matter, the total yield of polyphenols, tartaric (wine) compounds, reducing substances is determined. It was established that the use of dry grape pomace of 3 mm fraction ensures the maximum yield of target products. Rational parameters of this process are determined. The maximum yield of dry substances during the SCW extraction of GP is provided by the following process parameters: T=150–160 ºC, τ=90 min, P=12 MPa and liquid-solid ratio of 1:10. Rational process parameters of SCW extraction of GP during the extraction of total polyphenols: T=100–110 ºC, τ=60 min, P=12 MPa and liquid-solid ratio of 1:10. The extracts obtained with these parameters have a high antioxidant activity – 94.01 %. Rational process parameters of SCW extraction of GP during the extraction of reducing substances: T=150–160 ºC, τ=90 min, P=12 MPa and liquid-solid ratio of 1:10. These parameters provide extraction of up to 50 % of reducing substances. The high titrated acidity of the extracts obtained (6.649, 0.1 mol/l NaOH per 1 g of extract, ml) is provided by the extraction of GP with the following process parameters: T=150–160 ºC, τ=90 min, P=12 MPa and liquid-solid ratio of 1:5

Author Biographies

Valeri Sukmanov, Poltava University of Economics and Trade Koval str., 3, Poltava, Ukraine, 36014

Doctor of Technical Sciences, Professor

Department of technological equipment for food production and commerce

Anatoliy Ukrainets, National University of Food Technologies Volodymyrska str., 68, Kyiv, Ukraine, 01601

Doctor of Technical Sciences, Professor

Rector

 

Volodymyr Zavialov, National University of Food Technologies Volodymyrska str., 68, Kyiv, Ukraine, 01601

Doctor of Technical Sciences, Professor

Department of Processes and Apparatus for Food Production

Andrii Marynin, National University of Food Technologies Volodymyrska str., 68, Kyiv, Ukraine, 01601

PhD

Problem research laboratory

References

  1. World Vitiviniculture Situation. OIV Statistical Report on World Vitiviniculture (2016). Paris: International Organization of Vine and Wine, 16.
  2. Issa, G. (Jason), Patti, A. F., Issa, G. (Jason), Smernik, R., Wilkinson, K. (2009). Chemical composition of composted grape marc. Water Science & Technology, 60 (5), 1265. doi: 10.2166/wst.2009.564
  3. Wang, X., Tong, H., Chen, F., Gangemi, J. D. (2010). Chemical characterization and antioxidant evaluation of muscadine grape pomace extract. Food Chemistry, 123 (4), 1156–1162. doi: 10.1016/j.foodchem.2010.05.080
  4. Hamatschek, J., Meckler, O. (1995). Extraktion der Polyphenole von der Traubennahme biz zur Abfüllung unter besonderer Berücksichtigung der Entsaftung durch Dekanter. Mitteilungen Klosterneuburg, 45 (3), 75–81.
  5. Xia, E.-Q., Deng, G.-F., Guo, Y.-J., Li, H.-B. (2010). Biological Activities of Polyphenols from Grapes. International Journal of Molecular Sciences, 11 (2), 622–646. doi: 10.3390/ijms11020622
  6. Konichev, A. S., Baurin, P. V. et. al. (2011). Tradicionnye i sovremennye metody ehkstrakciy biologicheski aktivnyh veshchestv iz rastitel'nogo syr'ya: perspektivy, dostoinstva, nedostatki. Vestnik MGU. Seriya «Estestvennye nauki», 3, 49–54.
  7. Boussetta, N., Vorobiev, E., Deloison, V., Pochez, F., Falcimaigne-Cordin, A., Lanoisellé, J.-L. (2011). Valorisation of grape pomace by the extraction of phenolic antioxidants: Application of high voltage electrical discharges. Food Chemistry, 128 (2), 364–370. doi: 10.1016/j.foodchem.2011.03.035
  8. Galvan d’Alessandro, L., Kriaa, K., Nikov, I., Dimitrov, K. (2012). Ultrasound assisted extraction of polyphenols from black chokeberry. Separation and Purification Technology, 93, 42–47. doi: 10.1016/j.seppur.2012.03.024
  9. Kronholm, J., Hartonen, K., Riekkola, M.-L. (2007). Analytical extractions with water at elevated temperatures and pressures. TrAC Trends in Analytical Chemistry, 26 (5), 396–412. doi: 10.1016/j.trac.2007.03.004
  10. Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., Ong, E. S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography A, 1217 (16), 2484–2494. doi: 10.1016/j.chroma.2009.12.050
  11. Chemat, F., Vian, M. A., Cravotto, G. (2012). Green Extraction of Natural Products: Concept and Principles. International Journal of Molecular Sciences, 13 (12), 8615–8627. doi: 10.1002/9783527676828
  12. Plaza, M., Turner, C. (2015). Pressurized hot water extraction of bioactives. TrAC Trends in Analytical Chemistry, 71, 39–54. doi: 10.1016/j.trac.2015.02.022
  13. Zakaria, S. M., Kamal, S. M. M. (2015). Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. Food Engineering Reviews, 8 (1), 23–34. doi: 10.1007/s12393-015-9119-x
  14. Liang, X., Fan, Q. (2013). Application of Sub-Critical Water Extraction in Pharmaceutical Industry. Journal of Materials Science and Chemical Engineering, 01 (05), 1–6. doi: 10.4236/msce.2013.15001
  15. Bondakova (Krivchenkova), M. V., Klyshinskaya, E. V., Butova, S. N. (2012). Sovershenstvovanie sposobov polucheniya ehkstrakta vinograda s cel'yu ego dal'neyshego ispol'zovaniya pri proizvodstve kosmeticheskih izdeliy. Novye himiko-farmacevticheskie tekhnologiy, 154–157.
  16. Rajha, H. N., Darra, N. E., Hobaika, Z., Boussetta, N., Vorobiev, E., Maroun, R. G., Louka, N. (2014). Extraction of Total Phenolic Compounds, Flavonoids, Anthocyanins and Tannins from Grape Byproducts by Response Surface Methodology. Influence of Solid-Liquid Ratio, Particle Size, Time, Temperature and Solvent Mixtures on the Optimization Process. Food and Nutrition Sciences, 05 (04), 397–409. doi: 10.4236/fns.2014.54048
  17. Liazid, A., Barbero, G., Azaroual, L., Palma, M., Barroso, C. (2014). Stability of Anthocyanins from Red Grape Skins under Pressurized Liquid Extraction and Ultrasound-Assisted Extraction Conditions. Molecules, 19 (12), 21034–21043. doi: 10.3390/molecules191221034
  18. Arnous, A., Meyer, A. S. (2008). Comparison of methods for compositional characterization of grape (Vitis vinifera L.) and apple (Malus domestica) skins. Food and Bioproducts Processing, 86 (2), 79–86. doi: 10.1016/j.fbp.2008.03.004
  19. Da Porto, C., Decorti, D., Natolino, A. (2014). Water and ethanol as co-solvent in supercritical fluid extraction of proanthocyanidins from grape marc: A comparison and a proposal. The Journal of Supercritical Fluids, 87, 1–8. doi: 10.1016/j.supflu.2013.12.019
  20. Liazid, A., Guerrero, R. F., Cantos, E., Palma, M., Barroso, C. G. (2011). Microwave assisted extraction of anthocyanins from grape skins. Food Chemistry, 124 (3), 1238–1243. doi: 10.1016/j.foodchem.2010.07.053
  21. Monrad, J. K., Howard, L. R., King, J. W., Srinivas, K., Mauromoustakos, A. (2010). Subcritical Solvent Extraction of Anthocyanins from Dried Red Grape Pomace. Journal of Agricultural and Food Chemistry, 58 (5), 2862–2868. doi: 10.1021/jf904087n
  22. Duba, K. S., Casazza, A. A., Mohamed, H. B., Perego, P., Fiori, L. (2015). Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food and Bioproducts Processing, 94, 29–38. doi: 10.1016/j.fbp.2015.01.001
  23. Luquerodriguez, J., Luquedecastro, M., Perezjuan, P. (2007). Dynamic superheated liquid extraction of anthocyanins and other phenolics from red grape skins of winemaking residues. Bioresource Technology, 98 (14), 2705–2713. doi: 10.1016/j.biortech.2006.09.019
  24. Garcia-Marino, M., Rivas-Gonzalo, J. C., Ibanez, E., Garcia-Moreno, C. (2006). Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction. Analytica Chimica Acta, 563 (1-2), 44–50. doi: 10.1016/j.aca.2005.10.054
  25. Antuon, I. D. (2009). Use of sub-critical water for the extraction of natural antioxidants from by-products and wastes of the food industry. 14th Workshop on the Developments in the Italian PhD Research on Food Science Technology and Biotechnology. Italy: University of Sassari Oristano, 16–18.
  26. Aliakbarian, B., Fathi, A., Perego, P., Dehghani, F. (2012). Extraction of antioxidants from winery wastes using subcritical water. The Journal of Supercritical Fluids, 65, 18–24. doi: 10.1016/j.supflu.2012.02.022
  27. Brahim, M., Gambier, F., Brosse, N. (2014). Optimization of polyphenols extraction from grape residues in water medium. Industrial Crops and Products, 52, 18–22. doi: 10.1016/j.indcrop.2013.10.030
  28. Kammerer, D., Claus, A., Carle, R., Schieber, A. (2004). Polyphenol Screening of Pomace from Red and White Grape Varieties (Vitis viniferaL.) by HPLC-DAD-MS/MS. Journal of Agricultural and Food Chemistry, 52 (14), 4360–4367. doi: 10.1021/jf049613b
  29. Escribano-Bailon, M., Santos-Buelga, C.; Santos-Buelga, C., Williamson, G. (Eds.) (2003). Polyphenol extraction from foods. Methods in polyphenol analysis. United Kingdom: The Royal Society of Chemistry, 1–16.
  30. Alvarez-Casas, M., Garcia-Jares, C., Llompart, M., Lores, M. (2014). Effect of experimental parameters in the pressurized solvent extraction of polyphenolic compounds from white grape marc. Food Chemistry, 157, 524–532. doi: 10.1016/j.foodchem.2014.02.078
  31. Otero-Pareja, M., Casas, L., Fernandez-Ponce, M., Mantell, C., Ossa, E. (2015). Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules, 20 (6), 9686–9702. doi: 10.3390/molecules20069686
  32. Hansen, C. (2007). Hansen solubility parameters. Boca Raton: CRC Press, 544. doi: 10.1201/9781420006834
  33. Srinivas, K., King, J. W., Monrad, J. K., Howard, L. R., Hansen, C. M. (2009). Optimization of Subcritical Fluid Extraction of Bioactive Compounds Using Hansen Solubility Parameters. Journal of Food Science, 74 (6), E342–E354. doi: 10.1111/j.1750-3841.2009.01251.x
  34. King, J. W., Srinivas, K. (2009). Multiple unit processing using sub- and supercritical fluids. The Journal of Supercritical Fluids, 47 (3), 598–610. doi: 10.1016/j.supflu.2008.08.010
  35. Haghighi, A., Khajenoori, M. (2013). Subcritical Water Extraction. Mass Transfer – Advances in Sustainable Energy and Environment Oriented Numerical Modeling. doi: 10.5772/54993
  36. Khajenoori, M., Asl, A. H., Hormozi, F. (2009). Proposed Models for Subcritical Water Extraction of Essential Oils. Chinese Journal of Chemical Engineering, 17 (3), 359–365. doi: 10.1016/s1004-9541(08)60217-7
  37. Khajenoori, M., Omidbakhsh, E., Hormozi, F., Haghighi, Asl A. (2009). CFD modeling of subcritical water extraction. The 6th International chemical Engineering Congress (IChEC). Kish Island, Iran: Association of Chemical Engineers. Available at: https://www.civilica.com/Paper-ICHEC06-ICHEC06_250.html
  38. Sukmanov, V., Gaceu, L., Zakharevych, V., Marynin, A., Rogovyi, I., Farisieiev, A. (2016). Physical and mathematical modeling of extraction from grape marc by subcritical water. Journal of EcoAgriToursim, 12 (1), 83–93.
  39. Olennikov, D. N., Tanhaeva, L. M. (2006). Metodika kolichestvennogo opredeleniya gruppovogo sostava uglevodnogo kompleksa rastitel'nyh ob'ektov. Himiya rastitel'nogo syr'ya, 4, 29–33.
  40. Sukmanov, V., Ukrainets, A., Zavialov, V., Marynin, A. (2017). Establishing the equipment-methodical support for determining the properties of extracts of grape pomace extracts produced in the subcreative water environment. EUREKA: Life Sciences, 5, 18–25. doi: 10.21303/2504-5695.2017.00434
  41. Sukmanov, V. O., Petrova, Yu. M., Lagovskiy, I. O. (2015). Apparaturnoe oformlenie processa ehkstragirovaniya biologicheski aktivnyh veshchestv iz vyzhimok vinograda v srede subkriticheskoy vody. Aktualni problemy ta perspektyvy rozvytku kharchovykh vyrobnytstv, hotelno-restorannoho ta turystychnoho biznesu. Poltava: PUET, 276–277.
  42. Alexandrov, A. (1998). Management system IAPWS-IF97 for calculating of thermodynamic properties of water and steam for industrial calculations. Additional equations. Fittings, 10, 64–72.
  43. Veshnyakov, V. A., Habarov, Yu. G., Kamakina, N. D. (2008). Cravnenie metodov opredeleniya reduciruyushchih veshchestv: metod Bertrana, ehbuliostaticheskiy i fotometricheskiy metody. Himiya rastitel'nogo syr'ya, 4, 47–50.
  44. Ryzhova, G. L., Matasova, S. A., Bashurov, S. G. (1997). Poluchenie suhogo ehkstrakta iz plodov ryabiny sibirskoy i izuchenie ego himicheskogo sostava. Himiya rastitel'nogo syr'ya, 2, 37–41.

Downloads

Published

2017-10-19

How to Cite

Sukmanov, V., Ukrainets, A., Zavialov, V., & Marynin, A. (2017). Research of extraction of biologically active substances from grape pomace by the subcritical water. Eastern-European Journal of Enterprise Technologies, 5(11 (89), 70–80. https://doi.org/10.15587/1729-4061.2017.108992

Issue

Section

Technology and Equipment of Food Production