Experimental research into aerodynamic characteristics of the model of a maneuvered aircraft with an airflow passage through engines

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109499

Keywords:

wind tunnel, aerodynamical characteristics, gas-turbine engine, maneuverable aircraft, weight experiment

Abstract

We report results of experimental investigation of aerodynamic characteristics of an aircraft maneuvering model with and without a passage of airflow through the engines. During aero-tube experiment, research into the fighter aircraft models with round and rectangular shapes of nozzles was conducted. A basic method for studying aerodynamic characteristics is the weight experiment. When processing experimental data, we applied a method of corrections and calculated correction factors that depend on the shape of working part of the wind tunnel and relative dimensions of the model. The methodology for a comprehensive analysis of corrections and for determining magnitudes of the most important correction coefficients was developed, that is frontal drag and lifting force. Verification of the developed technique was carried out by comparing blowdown results of the fighter aircraft model of the MiG-29 type in the wind tunnel T-1 at Kharkiv National University of Air Forces named after Ivan Kozhedub with the results obtained from reliable semi-empirical dependences. Relative error of determining maximum aerodynamic quality of the aircraft was 3 % compared to the results of aerodynamic characteristics of the actual aircraft. The difference of the developed technique is the possibility of using interchangeable nozzles of engine imitators and the introduction of correction for the resistance of inner channels of the aircraft model’s nacelles. We demonstrated feasibility of the developed procedure for aero-tube experiment and adequacy of accounting for experimentally-determined corrections

Author Biographies

Evgen Ukrainets, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor

Department of the Design and Strength of Aircraft and Engines

Vasiliy Loginov, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Senior Researcher

Department of Engineering and Aviation provision

Alexey Kotov, Ivan Kozhedub Kharkiv University of Air Force Sumska str., 77/79, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Associate Professor

Management of the University

Alexander Rasstrygin, Central Research Institute of Armament and Military Equipment of the Armed Forces of Ukraine Povitroflostky ave., 6, Kyiv, Ukraine, 03168

Doctor of Technical Sciences, Senior Researcher

Research department No. 5

References

  1. Byushgens, G. S. (1998). Aerodinamika, ustoychivost' i upravlyaemost' sverhzvukovyh samoletov. Moscow: Nauka, 816.
  2. Discetti, S., Ianiro, A. (2017). Experimental аerodynamics. Description: Boca Raton: CRC Press, 454.
  3. Tropea, C., Yarin, A. L., Foss, J. F. (2007). Springer Handbook of Experimental Fluid Mechanics. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-30299-5
  4. Mironov, A. D., Zamyatin, A. I., Korolev, A. A. et. al. (1985). Metody aerofizicheskih issledovaniy v polete. Moscow: Mashinostroenie, 112.
  5. Pashkovskiy, I. M. (2003). Letnye ispytaniya pilotiruemyh aviacionnyh i vozdushno-kosmicheskih letatel'nyh apparatov. Moscow: MAI, 84.
  6. Kotik, M. G., Pavlov, A. V., Pashkovskiy, I. M. (1978). Letnye ispytaniya samoletov. Moscow: Mashinostroenie, 423.
  7. Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656, 5–28. doi: 10.1017/s0022112010001217
  8. Humble, R. A., Scarano, F., van Oudheusden, B. W. (2007). Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Experiments in Fluids, 43 (2-3), 173–183. doi: 10.1007/s00348-007-0337-8
  9. let CAGI. Aktual'nye problemy aeroakustiki, gidrodinamiki i promyshlennoy aerodinamiki (1999). Trudy CAGI, 2534, 383.
  10. Anipko, O. B., Bashinskiy, V. G., Ukrainec, E. A. (2013). Aerodinamicheskiy oblik, radiolokacionnaya i infrakrasnaya zametnost' samoletov voennogo naznacheniya pri ih obnaruzhenii. Zaporozh'e: AO “Motor Sіch”, 250.
  11. Radcig, A. N. (2004). Eksperimental'naya gidroaeromekhanika. Moscow: MAI, 296.
  12. Dubov, B. S., Radcig, A. N., Semenchikov, N. V. (2004). Modelirovanie usloviy poleta letatel'nyh apparatov pri ispytaniyah v aerodinamicheskih trubah. Moscow: MAI, 76.
  13. Krasnov, N. F. (1981). Osnovy aerodinamicheskogo rascheta. Moscow: Vysshaya shkola, 496.
  14. Davidson, P. A., Cohen, I., Dowling, D. (2004). Turbulence: An Introduction for Scientists and Engineers. Oxford: Oxford University Press, UК, 680.
  15. Kundu, P., Cohen, I., Dowling, D. (2006). Fluid Mechanics. Academic Press: Walthom, NC, 928.
  16. Rice, J. (2006). Mathematical Statistics and Data Analysis. Cengage Learning: Belmont, CA, 432.
  17. Wolf, S. W. D. (1995). Adaptive wall technology for improved wind tunnel testing techniques – A review. Progress in Aerospace Sciences, 31 (2), 85–136. doi: 10.1016/0376-0421(95)90869-o
  18. Ocokoljic, G., Rasuo, B., Kozic, M. (2017). Supporting system interference on aerodynamic characteristics of an aircraft model in a low-speed wind tunnel. Aerospace Science and Technology, 64, 133–146. doi: 10.1016/j.ast.2017.01.021
  19. Nicolosi, F., Della Vecchia, P., Corcione, S. (2015). Design and aerodynamic analysis of a twin-engine commuter aircraft. Aerospace Science and Technology, 40, 1–16. doi: 10.1016/j.ast.2014.10.008
  20. Cummings, R. M., Morton, S. A., Siegel, S. G. (2008). Numerical prediction and wind tunnel experiment for a pitching unmanned combat air vehicle. Aerospace Science and Technology, 12 (5), 355–364. doi: 10.1016/j.ast.2007.08.007
  21. Guo, L., Zhu, M., Nie, B., Kong, P., Zhong, C. (2017). Initial virtual flight test for a dynamically similar aircraft model with control augmentation system. Chinese Journal of Aeronautics, 30 (2), 602–610. doi: 10.1016/j.cja.2016.12.034
  22. Vallespin, D., Badcock, K. J., Da Ronch, A., White, M. D., Perfect, P., Ghoreyshi, M. (2012). Computational fluid dynamics framework for aerodynamic model assessment. Progress in Aerospace Sciences, 52, 2–18. doi: 10.1016/j.paerosci.2011.12.004
  23. Wiggen, S., Vob, G. (2014). Development of a wind tunnel experiment for vortex dominated flow at a pitching Lambda wing. CEAS Aeronautical Journal, 5 (4), 477–486. doi: 10.1007/s13272-014-0121-4
  24. Pǎtru, S., Florin, M., Niculae, M. (2010). Wind tunnel testing of the IAR 99 SOIM aircraft equipped with means for discovery and control of weather risk phenomena. INCAS BULLETIN, 2 (3), 91–98. doi: 10.13111/2066-8201.2010.2.3.10

Downloads

Published

2017-10-24

How to Cite

Ukrainets, E., Loginov, V., Kotov, A., & Rasstrygin, A. (2017). Experimental research into aerodynamic characteristics of the model of a maneuvered aircraft with an airflow passage through engines. Eastern-European Journal of Enterprise Technologies, 5(7 (89), 45–52. https://doi.org/10.15587/1729-4061.2017.109499

Issue

Section

Applied mechanics