Research into frictional interaction between the magnetized rolling elements

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109523

Keywords:

friction force, adhesion coefficient, external magnetic field, rolling elements, magnetostriction

Abstract

Results are presented of theoretical and experimental studies into effect of external magnetic field on the changes in adhesion parameters in a contact between magnetized steel rolling elements when they brought to each other to the level of atomic roughness. In theoretical studies, we calculated the interaction energy, adhesion force, friction and adhesion coefficient between magnetized steel rolling elements. The calculations are based on the general law of interaction between systems of charged particles, described by the Lennard-Jones potential, which takes into account both repulsion forces and attraction forces of these particles. A mathematical model was proposed for the calculation of force and coefficient of adhesion between steel rolling elements, taking into account magnetostrictive phenomena in the surface layers of a metal when magnetized by a constant magnetic field. The calculation of force and coefficient of adhesion was performed on the example of interaction between a wheel of a locomotive and a rail; the proposed model, however, could be applied to other elements of rolling friction.

The technique and results of experimental studies are presented of the effect of external magnetic field on the coefficient of adhesion in the friction model of contact “wheel of a locomotive ‒ rail”. According to the results, magnetization of metal rolling elements leads to a significant, up to 36 %, increase in adhesion forces, which is important from the point of view of development and implementation of methods to control adhesion in similar tribological systems

Author Biographies

Sergey Voronin, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of Construction, track and handling machines

Ivan Hrunyk, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Economics and management of industrial and commercial business

Volodymyr Stefanov, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Construction, track and handling machines

Oleksandr Volkov, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Postgraduate student

Department of Construction, track and handling machines

Dmytro Onopreychuk, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of Construction, track and handling machines

References

  1. Berkovich, I. I., Gromakovskiy, D. G.; Gromakovskiy, D. G. (Ed.) (2000). Tribologiya. Fizicheskie osnovy, mekhanika i tekhnicheskie prilozheniya. Samara: Samar. Gos. Tekhn. un-t, 268.
  2. Ahmatov, A. C. (1963). Molekulyarnaya fizika granichnogo treniya. Moscow: Fizmatgiz, 472.
  3. Balanovskiy, A. E. (2011). Sistema koleso-rel's. Ch. 1. Konec sistemy koleso-rel's i vnov' nachalo. Irkutsk: Izd-vo IrGTU, 1010.
  4. Liu, B., Mei, T. X., Bruni, S. (2016). Design and optimisation of wheel-rail profiles for adhesion improvement. Vehicle System Dynamics, 54 (3), 429–444. doi: 10.1080/00423114.2015.1137958
  5. Kulichenko, A. Ya., Kuzin, M. O., Vakulenko, I. O. (2013). Otsinka yakisnykh pokaznykiv kontaktuvannia poverkhnevykh shariv trybolohichnoi systemy «koleso-reika». Nauka ta prohres transportu. Visnyk Dnipropetr. nats. un-tu zaliznych. transp. im. akad. V. Lazariana, 3 (45), 44–52.
  6. Keropyan, A., Gorbatyuk, S. (2016). Impact of Roughness of Interacting Surfaces of the Wheel-Rail Pair on the Coefficient of Friction in their Contact Area. Procedia Engineering, 150, 406–410. doi: 10.1016/j.proeng.2016.06.753
  7. Markov, D. P. (2007). Tribologiya i ee primenenie na zheleznodorozhnom transporte. Moscow: Intekst, 408.
  8. Sosnovskiy, L. A. (2003). Osnovy tribofatiki. Ch. 1. Gomel': BelGUT, 246.
  9. Pichlik, P., Zdenek, J. (2014). Overview of slip control methods used in locomotives. Transaction on Electrical Engineering, 3 (2), 38–43.
  10. Markov, D. P. (2003). Mekhanizmy scepleniya pary koleso-rel's s uchetom fononnogo treniya. Vestnik VNIIZHT, 6, 34–39.
  11. Wang, W., Guo, H. W., J., Liu, Q., Zhu, M., Jin, X. (2014). Experimental investigation of adhesion coefficient of wheel/rail under the track ramp conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228 (7), 808–815. doi: 10.1177/1350650114526386
  12. Chen, H. (2012). Factors that influence the adhesion coefficient between wheel and rail. Railway Technology Avalanche, 40, 240.
  13. Chen, H., Ban, T., Ishida, M., Nakahara, T. (2012). Influential Factors on Adhesion between Wheel and Rail under Wet Conditions. Quarterly Report of RTRI, 53 (4), 223–230. doi: 10.2219/rtriqr.53.223
  14. Lysikov, E. N., Voronin, S. V. (2012). Teplovye i elektricheskie kontaktnye yavleniya v tribosisteme «koleso – rel's». Zb. nauk. pr. Ukr. derzh. akad. zaliznych. transp, 129, 155–162.
  15. Vorob'ev, D. V. (2005). Uluchshenie frikcionnyh harakteristik pary treniya koleso-rel's za schet vozdeystviya na kontakt elektricheskogo toka i magnitnogo polya. Bryansk, 153.
  16. Wang, W., Zhang, H., Liu, Q., Zhu, M., Jin, X. (2015). Investigation on adhesion characteristic of wheel/rail under the magnetic field condition. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 230 (5), 611–617. doi: 10.1177/1350650115606480
  17. Voronin, S. V., Grunyk, I. S., Volkov, A. V. (2014). Izmenenie koefficienta scepleniya kolesa s rel'som v processe prirabotki kontaktiruyushchih poverhnostey. Zb. nauk. pr. Ukr. derzh. akad. zaliznych. transp., 148, 170–176.
  18. Knunyanc, I. L. et. al. (Eds.) (1992). Himicheskaya enciklopediya. Vol. 3. Medi – polimernye. Moscow: Bol'shaya Rossiyskaya enciklopediya, 639.
  19. Kaplan, I. G. (1982). Vvedenie v teoriyu mezhmolekulyarnyh vzaimodeystviy. Moscow: Nauka. Glavnaya redakciya fiziko-matematicheskoy literatury, 312.
  20. Bynkov, K. A., Kim, V. S., Kuznecov, V. M. (1991). Poverhnostnaya energiya GCK – metallov. Poverhnost'. Fizika, himiya, mekhanika, 9, 5–8.
  21. Bozort, R.; Kondorskiy, E. I., Livshic, B. G. (Eds.) (1956). Ferromagnetizm. Moscow: Izdatel'stvo inostrannoy literatury, 784.
  22. Vonsovskiy, S. V. (1971). Magnetizm. Magnitnye svoystva dia-, para-, ferro-, antiferro-, i ferrimagnetikov. Moscow: Glavnaya redakciya fiziko-matematicheskoy literatury izd-va Nauka, 1032.

Downloads

Published

2017-10-24

How to Cite

Voronin, S., Hrunyk, I., Stefanov, V., Volkov, O., & Onopreychuk, D. (2017). Research into frictional interaction between the magnetized rolling elements. Eastern-European Journal of Enterprise Technologies, 5(7 (89), 11–16. https://doi.org/10.15587/1729-4061.2017.109523

Issue

Section

Applied mechanics