Application of oxide-metallic catalysts on valve metals for ecological catalysis

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.109885

Keywords:

ecological catalysis, oxide-metallic catalyst, plasma-electrolytic oxidation, catalytic activity

Abstract

It is shown that a promising technique for obtaining oxide-metallic catalysts is the plasma-electrolytic oxidation (PEO) of valve metals, particularly aluminum and titanium alloys. Such a mode of synthesis makes it possible to form catalytically active materials with a developed surface, high content of dopants, and a broad scope of application over a single-stage technological process. The d-metals, in particular, manganese and cobalt are most promising as the dopants for oxide-metallic catalysts.

Employing results of the experimental studies, we demonstrated pathways to control the composition and degree of surface development of the mangan- and cobalt-containing oxide-metallic systems by using complex electrolytes. It is established that the obtained oxide coatings are characterized by high catalytic activity in the model conversion reactions of carbon (II) oxide. In terms of such critical process parameters as the degree of conversion and ignition temperature, they are not inferior to, and in some cases, outperform industrial platinum catalysts. The use of manganese-containing oxide-metallic coating of the piston in an internal combustion engine leads to lower fuel consumption and a reduction in the toxicity of gas emissions

Author Biographies

Ann Karakurkchi, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Head of Research Laboratory

Research Laboratory of Military Training Faculty

Mykola Sakhnenko, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Physical Chemistry

Maryna Ved, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of technical sciences, Professor

Department of General and Inorganic Chemistry

Alexander Galak, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD

Department of Physical Chemistry

Serhii Petrukhin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Radiation, Chemical, Biological Protection Military Training Faculty

References

  1. Khopkar, S. M. (2007). Environmental Pollution Monitoring and Control. New Age International, 494.
  2. Heck, R. M., Farrauto, R. J., Gulati, S. T. (2009). Catalytic air pollution control. John Wiley & Sons, 544. doi: 10.1002/9781118397749
  3. Suib, S. L. (2013). New and Future Developments in Catalysis: Catalysis for remediation and environmental concerns. Elsevier, 618.
  4. Vlasenko, V. M. (1973). Kataliticheskaya ochistka gazov. Kyiv: Tekhnika, 199.
  5. Grison, C., Escande, V., Biton, J. (2015). Ecocatalysis. A New Integrated Approach to Scientific Ecology. Elsevier, 100.
  6. Meille, V. (2006). Review on methods to deposit catalysts on structured surfaces. Applied Catalysis A: General, 315, 1–17. doi: 10.1016/j.apcata.2006.08.031
  7. Kašpar, J., Fornasiero, P., Hickey, N. (2003). Automotive catalytic converters: current status and some perspectives. Catalysis Today, 77 (4), 419–449. doi: 10.1016/s0920-5861(02)00384-x
  8. Lukiyanchuk, I. V., Rudnev, V. S., Tyrina, L. M. (2016). Plasma electrolytic oxide layers as promising systems for catalysis. Surface and Coatings Technology, 307, 1183–1193. doi: 10.1016/j.surfcoat.2016.06.076
  9. Gupta, P., Tenhundfeld, G., Daigle, E. O., Ryabkov, D. (2007). Electrolytic plasma technology: Science and engineering – An overview. Surface and Coatings Technology, 201 (21), 8746–8760. doi: 10.1016/j.surfcoat.2006.11.023
  10. Bagheri, S., Muhd Julkapli, N., Bee Abd Hamid, S. (2014). Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis. The Scientific World Journal, 2014, 1–21. doi: 10.1155/2014/727496
  11. Md Jani, A. M., Losic, D., Voelcker, N. H. (2013). Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progress in Materials Science, 58 (5), 636–704. doi: 10.1016/j.pmatsci.2013.01.002
  12. Berdahl, P., Akbari, H. (2008). Evaluation of Titanium Dioxide as a Photocatalyst for Removing Air Pollutants. California Energy Commission, PIER Energy‐Related Environmental Research Program, 33.
  13. Verma, A., Poonam, Dixit, D. (2012). Photocatalytic degradability of insecticide Chlorpyrifos over UV irradiated Titanium dioxide in aqueous phase. International Journal of Environmental Sciences, 3 (2), 743–755.
  14. Lu, X., Mohedano, M., Blawert, C., Matykina, E., Arrabal, R., Kainer, K. U., Zheludkevich, M. L. (2016). Plasma electrolytic oxidation coatings with particle additions – A review. Surface and Coatings Technology, 307, 1165–1182. doi: 10.1016/j.surfcoat.2016.08.055
  15. Rudnev, V. S., Lukiyanchuk, I. V., Vasilyeva, M. S., Medkov, M. A., Adigamova, M. V., Sergienko, V. I. (2016). Aluminum- and titanium-supported plasma electrolytic multicomponent coatings with magnetic, catalytic, biocide or biocompatible properties. Surface and Coatings Technology, 307, 1219–1235. doi: 10.1016/j.surfcoat.2016.07.060
  16. Rudnev, V. S., Vasilyeva, M. S., Kondrikov, N. B., Tyrina, L. M. (2005). Plasma-electrolytic formation, composition and catalytic activity of manganese oxide containing structures on titanium. Applied Surface Science, 252 (5), 1211–1220. doi: 10.1016/j.apsusc.2004.12.054
  17. Sakhnenko, N. D., Ved’, M. V., Androshchuk, D. S., Korniy, S. A. (2016). Formation of coatings of mixed aluminum and manganese oxides on the AL25 alloy. Surface Engineering and Applied Electrochemistry, 52 (2), 145–151. doi: 10.3103/s1068375516020113
  18. Xiaohong, W., Wei, Q., Xianbo, D., Weidong, H., Zhaohua, J. (2007). Dopant influence on the photo-catalytic activity of TiO2 films prepared by micro-plasma oxidation method. Journal of Molecular Catalysis A: Chemical, 268 (1-2), 257–263. doi: 10.1016/j.molcata.2006.12.022
  19. Di, S., Guo, Y., Lv, H., Yu, J., Li, Z. (2015). Microstructure and properties of rare earth CeO2-doped TiO2 nanostructured composite coatings through micro-arc oxidation. Ceramics International, 41 (5), 6178–6186. doi: 10.1016/j.ceramint.2014.12.134
  20. Bayati, M. R., Molaei, R., Moshfegh, A. Z., Golestani-Fard, F. (2011). A strategy for single-step elaboration of V2O5-grafted TiO2 nanostructured photocatalysts with evenly distributed pores. Journal of Alloys and Compounds, 509 (21), 6236–6241. doi: 10.1016/j.jallcom.2011.03.013
  21. Stojadinović, S., Radić, N., Vasilić, R., Petković, M., Stefanov, P., Zeković, L., Grbić, B. (2012). Photocatalytic properties of TiO2/WO3 coatings formed by plasma electrolytic oxidation of titanium in 12-tungstosilicic acid. Applied Catalysis B: Environmental, 126, 334–341. doi: 10.1016/j.apcatb.2012.07.031
  22. Sakhnenko, N. D. (2014). Characterization and photocatalytic activity of Ti/TinOm •ZrxOy coatings for azo-dye degradation. Functional Materials, 21 (4), 492–497. doi: 10.15407/fm21.04.492
  23. Sakhnenko, M., Karakurkchi, A., Galak, A., Menshov, S., Matykin, O. (2017). Examining the formation and properties of TiO2 oxide coatings with metals of iron triad. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 4–10. doi: 10.15587/1729-4061.2017.97550
  24. Vasilyeva, M. S., Rudnev, V. S., Ustinov, A. Y., Korotenko, I. A., Modin, E. B., Voitenko, O. V. (2010). Cobalt-containing oxide layers on titanium, their composition, morphology, and catalytic activity in CO oxidation. Applied Surface Science, 257 (4), 1239–1246. doi: 10.1016/j.apsusc.2010.08.031
  25. Lukiyanchuk, I. V., Rudnev, V. S., Tyrina, L. M., Chernykh, I. V. (2014). Plasma electrolytic oxide coatings on valve metals and their activity in CO oxidation. Applied Surface Science, 315, 481–489. doi: 10.1016/j.apsusc.2014.03.040
  26. Sakhnenko, N., Ved, M., Karakurkchi, A., Galak, A. (2016). A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0. Eastern-European Journal of Enterprise Technologies, 3 (5(81)), 37–43. doi: 10.15587/1729-4061.2016.69390
  27. Yar-Mukhamedova, G. S., Ved’, M. V., Karakurkchi, A. V., Sakhnenko, N. D. (2017). Mixed alumina and cobalt containing plasma electrolytic oxide coatings. IOP Conference Series: Materials Science and Engineering, 213, 012020. doi: 10.1088/1757-899x/213/1/012020
  28. Parsadanov, I. V., Sakhnenko, M. D., Khyzhniak, V. O., Karakurkchi, H. V. (2016). Improving the environmental performance of engines by intra-cylinder neutralization of toxic exhaust gases. Internal Combustion Engines, 2, 63–67. doi: 10.20998/0419-8719.2016.2.12
  29. Karakurkchi, A. V., Ved’, M. V., Yermolenko, I. Y., Sakhnenko, N. D. (2016). Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte. Surface Engineering and Applied Electrochemistry, 52 (1), 43–49. doi: 10.3103/s1068375516010087
  30. Snytnikov, P. V., Belyaev, V. A., Sobyanin, V. A. (2007). Kinetic model and mechanism of the selective oxidation of CO in the presence of hydrogen on platinum catalysts. Kinetics and Catalysis, 48 (1), 93–102. doi: 10.1134/s0023158407010132
  31. Ved’, M. V., Sakhnenko, N. D., Karakurkchi, A. V., Myrna, T. Yu. (2017). Functional mixed cobalt and aluminum oxide coatings for environmental safety. Functional Materials, 24 (2), 303–310. doi: 10.15407/fm24.02.303
  32. Sakhnenko, N. D., Ved, M. V., Karakurkchi, A. V. (2017). Nanoscale Oxide PEO Coatings Forming from Diphosphate Electrolytes. Nanophysics, Nanomaterials, Interface Studies, and Applications, 507–531. doi: 10.1007/978-3-319-56422-7_38

Downloads

Published

2017-10-24

How to Cite

Karakurkchi, A., Sakhnenko, M., Ved, M., Galak, A., & Petrukhin, S. (2017). Application of oxide-metallic catalysts on valve metals for ecological catalysis. Eastern-European Journal of Enterprise Technologies, 5(10 (89), 12–18. https://doi.org/10.15587/1729-4061.2017.109885