Creation of the energy approach for estimating automobile dynamics and fuel efficiency

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110248

Keywords:

evaluation of dynamics, energy efficiency, additional energy losses, torque non-uniformity

Abstract

We have developed an energy approach to estimating the dynamics and fuel economy of cars that makes it possible to determine interrelation between consumption of energy and the kinetic energy of a car. We determined coefficients of the specified interrelation for basic and additional (unproductive) consumption of energy. Based on the obtained coefficients, it is possible to rank energy losses, as well as identify the ways to reduce them. As indicators of energy evaluation of the car’s dynamics, we proposed indicators of its dynamics ‒ the level of kinetic energy possessed by a vehicle at full weight and maximal motion speed; energy indicator of the car’s dynamics that can be applied as the unit for measuring energy consumption of engine, employed to move the car. The equations were derived that determine the following: a number of units of energy losses caused by the elastic and dynamic losses of car and transmission (per one meter of the distance); additional consumption of engine energy at fluctuations of the car guide wheels in the horizontal plane are caused by their imbalance. We present dependences that allowed us to do the following: determine maximal total consumption of engine energy while driving; assess a reduction in the additional costs for the motion of hybrid cars under the established mode at an increase in the share of torque generated by electric motors. The interrelations were determined between energy indicators of the dynamics and fuel economy of cars. We found that the smaller the number of units of energy consumption by engine, required to move the car, the higher energy efficiency of the vehicle. Calculation of all types of energy consumption in the units of kinetic energy of the car enables their comparison, analysis of their causes, and the identification of possible ways for their reduction. The proposed dependences could be used to determine engine energy consumption, required for the car motion, taking into account various factors. The equations derived make it possible to assess energy efficiency of the car at the stages of its design and modernization.

We have shown the way to improve dynamics and fuel efficiency of a car by reducing additional losses in the vehicle transmission through the use of a combined electromechanical drive of the driving wheels. Applying energy approach allowed us, using hybrid cars as an example, to determine energy saving at their steady motion. This saving for a car with a number of cylinders of 6‒8 can reach 25‒30 %

Author Biographies

Mikhail Podrigalo, Kharkiv National University of Automobile and Highways Yaroslava Mudrogo str., 25, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, ProfessorDepartment of machine building technology and machinery repair

Dmitry Klets, Kharkiv National University of Automobile and Highways Yaroslava Mudrogo str., 25, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Associate ProfessorDepartment of Computer Technologies and Mechatronics

Nadezhda Podrigalo, Kharkiv National University of Automobile and Highways Yaroslava Mudrogo str., 25, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Associate ProfessorDepartment of Engineering and Computer Graphics

Dmytro Abramov, Kharkiv National University of Automobile and Highways Yaroslava Mudrogo str., 25, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of machine building technology and machinery repair

Yuriy Tarasov, Kharkiv National University of Automobile and Highways Yaroslava Mudrogo str., 25, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of machine building technology and machinery repair

Ruslan Kaidalov, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

PhD, Associate Professor

Vasily Gat'ko, Kharkiv National University of Automobile and Highways Yaroslava Mudrogo str., 25, Kharkiv, Ukraine, 61002

PhDDepartment of machine building technology and machinery repair

Alexey Mazin, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

Postgraduate student

Alexey Litvinov, National Academy of the National Guard of Ukraine Zakhysnykiv Ukrainy sq., 3, Kharkіv, Ukraine, 61001

Adjunct

Marina Barun, Kharkiv National University of Automobile and Highways Yaroslava Mudrogo str., 25, Kharkiv, Ukraine, 61002

PhDDepartment of Ecology

References

  1. Harnesk, D. (2016). A Review of 'Energy and Transport in Green Transition: Perspectives on Ecomodernity'. Challenges in Sustainability, 4 (2). doi: 10.12924/cis2016.04020015
  2. Directive 2009/33/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of clean and energy-efficient road transport vehicles (2009). Official Journal of the European Union, L120, 5–13.
  3. Nagaycev, M. V. (2014). Sovremennye mirovye trebovaniya k energeticheskoy effektivnosti avtotransportnyh sredstv i puti ee obespecheniya v Rossii. Zhurnal avtomobil'nyh inzhenerov, 4, 32–37.
  4. Kozlov, A. V., Terenchenko, A. S. (2014). Sovremennye trebovaniya k urovnyu energeticheskoy effektivnosti transportnyh sredstv. Zhurnal avtomobil'nyh inzhenerov, 1 (84), 28–33.
  5. Nagaycev, M. V. (2014). Sovremennye mirovye trebovaniya k energeticheskoy effektivnosti avtotransportnyh sredstv i puti ee obespecheniya v Rossii. Chast' 2. Formirovanie i realizaciya trebovaniy v ES. Zhurnal avtomobil'nyh inzhenerov, 5 (88), 18–24.
  6. BenDor, T. K. (2012). The System Dynamics of U.S. Automobile Fuel Economy. Sustainability, 4 (12), 1013–1042. doi: 10.3390/su4051013
  7. Pérez-Gálvez, R., Fuentes-Vega, J. R., Cogollos-Martínez, J. B., Toledo-Dorrego, A. (2010). Evaluación de la eficiencia energética de vehículos pesados en el ciclo de movimiento básico modificado. Ingeniería Mecánica, 13 (1), 49–58.
  8. Etkin, D. M. (2009). O toplivnoy ekonomichnosti massovyh avtomobiley v USA, ee regulirovaniya i putyah povysheniya (po materialam publikaciy). Zhurnal avtomobil'nyh inzhenerov, 5 (58), 10–15.
  9. Podrigalo, M. A., Polyanskiy, A. S., Podrigalo, N. M., Abramov, D. V. (2015). Vliyanie neravnomernosti krutyashchego momenta dvigatelya vnutrennego sgoraniya na energeticheskuyu ekonomichnost' kolesnyh transportnyh sredstv. Zaliznychnyi transport Ukrainy, 6, 40–46.
  10. Kaidalov, R. O. (2016). Doslidzhennia mozhlyvosti znyzhennia enerhetychnykh vytrat avtomobilia pry vykorystanni hibrydnoho elektromekhanichnoho pryvodu veduchykh kolis. Systemy obrobky informatsii, 9 (146), 13–17.
  11. Kulikov, I. A., Selifonov, V. V., Filonov, A. I. (2011). Upravlenie kombinirovannoy energoustanovkoy avtomobilya: ekologiya ili energoeffektivnost. Avtomobil'naya promyshlennost', 1, 18–23.
  12. Blagonravov, A. A., Yurkevich, A. A., Yurkevich, A. V. (2014). Raskhod topliva pri dvizhenii v gorodskom ezdovom cikle avtomobilya s besstupenchatym mekhanicheskim transformatorom. Zhurnal avtomobil'nyh inzhenerov, 4, 42–47.
  13. Blagonravov, A. A., Yurkevich, A. V. (2017). Povyshenie energoeffektivnosti transportnih mashin pri ispol'zovanii mekhanicheskih besstupenchatyh peredach s reguliruemymi silovimi funkciyami. Zhurnal avtomobil'nyh inzhenerov, 2 (103), 18–21.
  14. Blagonravov, A. A., Yurkevich, A. A., Yurkevich, A. V. et. al. (2015). Energeticheskie harakteristiki mekhanicheskogo vypryamitelya besstupenchatyh peredach s reguliruemoy vnutrenney avtomatichnost'yu. Zhurnal avtomobil'nyh inzhenerov, 4 (93), 26–31.
  15. Chen, Z., Liu, W., Yang, Y., Chen, W. (2015). Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range Based on Dynamic Programming. Mathematical Problems in Engineering, 2015, 1–11. doi: 10.1155/2015/368769
  16. Wai, C. K., Rong, Y. Y., Morris, S. (2015). Simulation of a distance estimator for battery electric vehicle. Alexandria Engineering Journal, 54 (3), 359–371. doi: 10.1016/j.aej.2015.04.008
  17. Liu, J., Li, X., Wang, Z., Zhang, Y. (2016). Modelling and Experimental Study on Active Energy-Regenerative Suspension Structure with Variable Universe Fuzzy PD Control. Shock and Vibration, 2016, 1–11. doi: 10.1155/2016/6170275
  18. Huang, C., Chen, L., Jiang, H. B., Yuan, C. C., Xia, T. (2014). Nonlinear Analysis and Intelligent Control of Integrated Vehicle Dynamics. Mathematical Problems in Engineering, 2014, 1–15. doi: 10.1155/2014/832864
  19. Podrigalo, M. A., Volkov, V. P., Fayst, V. L. (2008). Racional'noe upravlenie processom kacheniya avtomobil'nogo kolesa. Visti avtomobilno – dorozhnoho instytutu, 2 (7), 70–78.
  20. Podrigalo, M. A., Abramov, D. V., Tarasov, Yu. V., Efimchuk, V. M. (2015). Energeticheskaya ekonomichnost' avtomobilya i kriterii ee ocenki. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriya: Avtomobile – ta traktorobuduvannia, 10 (1119), 28–37.
  21. Abramov, D. V., Podrigalo, N. M., Podrigalo, M. A. (2017). Koefficient poleznogo deystviya i pokazateli udel'nogo potrebleniya energii pri dvizhenii avtomobilya. Naukovi notatky, 57, 8–16.
  22. Prohorov, A. M., Gilyarov, M. S., Zhukov, E. M. et. al. (1980). Sovetskiy enciklopedicheskiy slovar'. Moscow: Sovetskaya Enciklopediya, 1600.

Downloads

Published

2017-10-24

How to Cite

Podrigalo, M., Klets, D., Podrigalo, N., Abramov, D., Tarasov, Y., Kaidalov, R., Gat’ko, V., Mazin, A., Litvinov, A., & Barun, M. (2017). Creation of the energy approach for estimating automobile dynamics and fuel efficiency. Eastern-European Journal of Enterprise Technologies, 5(7 (89), 58–64. https://doi.org/10.15587/1729-4061.2017.110248

Issue

Section

Applied mechanics