Optimization of technology for shredding the bee pollen

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110504

Keywords:

flavonoids of bee pollen, powder dispersity, technological properties of the bee pollen powder, phytochemical activity

Abstract

We conducted optimization of the technology for shredding bee pollen based on the results of evaluation of technological and physical-chemical indicators in order to obtain powder of high quality.

It was established by the results of performed studies that by using modern types of shredders, it is possible to shred bee pollen to particles the size of 12‒8 µm. We identified influence of the powder dispersity on the phytochemical activity of bee pollen based on the results of determining a content of flavonoids. The amount of flavonoids in the pollen increases in the case of shredding to particles the size of 15±5 µm, and decreases at dispersity ≤10 µm. We recommend shredding the bee pollen to particles the size of 15±5 µm. Based on the results of estimating the dispersity and homogeneity of the finished product, it was substantiated to apply a mill-mortar in the technology of shredding bee pollen. We optimized technological parameters of shredding bee pollen in a mill-mortar: speed of the working body is 70‒80 rpm (min−1), duration of treatment is 6 minutes, weight of the batch is 150 g.

The obtained results could prove useful when manufacturing new, or improving already existing, food products of high quality, or when applying in pharmacology and biotechnology

Author Biographies

Sergey Merzlov, Bila Tserkva National Agrarian University Soborna sq., 8/1, Bila Tserkva, Ukraine, 09117

Doctor of Agricultural Sciences, Professor

Department of food technology and technology processing of animal products chair

Neonila Lomova, Bila Tserkva National Agrarian University Soborna sq., 8/1, Bila Tserkva, Ukraine, 09117

PhD, Associate Professor

Department of food technology and technology processing of animal products chair

Serhiy Narizhniy, Bila Tserkva National Agrarian University Soborna sq., 8/1, Bila Tserkva, Ukraine, 09117

PhD, Assistant

Department of food technology and technology processing of animal products chair

Olha Snizhko, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

PhD, Assistant

Department technologies of meat, fish and marine products

Viktor Voroshchuk, Ternopil Ivan Pul’uj National Technical University Ruska str., 56, Ternopil, Ukraine, 46001

PhD, Associate Professor

Department of Food Technologies Equipment 

References

  1. Beal, T., Massiot, E., Arsenault, J. E., Smith, M. R., Hijmans, R. J. (2017). Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLOS ONE, 12 (4), e0175554. doi: 10.1371/journal.pone.0175554
  2. Rashid, A., Thakur, Er. S. N. (2012). Studies on Quality Parameters of Set Yoghurt Prepared By the Addition of Honey. International Journal of Scientific and Research Publications, 2 (9), 1–10.
  3. Yerlikaya, O. (2014). Effect of bee pollen supplement on antimicrobial, chemical, rheological, sensorial properties and probiotic viability of fermented milk beverages. Mljekarstvo, 268–279. doi: 10.15567/mljekarstvo.2014.0406
  4. Shleykin, A. G., Barakova, N. V., Petrova, M. N., Danilov, N. P., Argymbaeva, A. E. (2015). Vliyanie saharnogo siropa, meda i zlakov na reologicheskie svoystva yogurt. Nauchnyy zhurnal NIU ITMO, 2, 24–34.
  5. Snezhko, О., Lomova, N., Narizhnyy, S., Mingaleeva, Z. S. (2015). Enhancing food safety of pollen by means of irradiation. Ukrainian Food Journal, 4 (1), 32–39.
  6. Lomova, N. N., Lomova, N. N. (2014). Influence of incorporating honey, royal jelly and pollen on biotechnological processes of dairy drink. Eastern-European Journal of Enterprise Technologies, 2 (12 (68)), 62–65. doi: 10.15587/1729-4061.2014.23359
  7. Lomova, N. N., Snezhko, O. O., Narizhnyy, S. A. (2015). The biomass of Streptococcus thermophiles and Bifidobacterium longum in dairy medium with bee pollen. Biotechnologia Acta, 8 (1), 71–75. doi: 10.15407/biotech8.01.071
  8. Solomka, V. A., Tyndyk, E. V. Cvetochnaya pyl'ca i zdorov'e. Available at: http://dopomoha.kiev.ua/firms/med-pilca.htm
  9. Rimpler, M. (2003). Von Bienen gesammelte Blütenpollen: Eigenschaften und Verwendung. Ärztezeitschrift für Naturheilverfahren, 44 (3), 158–165.
  10. Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., Yan, H. (2005). Food Powders. NY: Springer, 372.
  11. Dziki, D., Gladyszewska, B., Rozylo, R., Polak, R., Rudy, S., Krzykowski, A. (2012). The size reduction theories of solid foods. TEKA. Commission of Motorization and Energetics in Agriculture, 12 (2), 41–45.
  12. Barnwal, P., Singh, K. K., Sharma, A., Choudhary, A. K., Saxena, S. N. (2015). Influence of pin and hammer mill on grinding characteristics, thermal and antioxidant properties of coriander powder. Journal of Food Science and Technology, 52 (12), 7783–7794. doi: 10.1007/s13197-015-1975-0
  13. Chauruka, S. R., Hassanpour, A., Brydson, R., Roberts, K. J., Ghadiri, M., Stitt, H. (2015). Effect of mill type on the size reduction and phase transformation of gamma alumina. Chemical Engineering Science, 134, 774–783. doi: 10.1016/j.ces.2015.06.004
  14. Zhang, F. L., Zhu, M., Wang, C. Y. (2008). Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder. International Journal of Refractory Metals and Hard Materials, 26 (4), 329–333. doi: 10.1016/j.ijrmhm.2007.08.005
  15. Gour, S. (2010). Manufacturing Nano-Sized Powders Using Salt- and Sugar-Assisted Milling. Philadelphia: Drexel University, 133.
  16. Murthy, T. P. K., Manohar, B. (2013). Grinding Studies of Mango Ginger: Mathematical Modelling of Particle Size Distribution and Energy Consumption. American Journal of Food Science and Technology, 1 (4), 70–76.
  17. Chen, Q. M., Fu, M. R., Yue, F. L., Cheng, Y. Y. (2015). Effect of Superfine Grinding on Physicochemical Properties, antioxidant Activity and Phenolic Content of Red Rice (Oryza sativa L.). Food and Nutrition Sciences, 06 (14), 1277–1284. doi: 10.4236/fns.2015.614133
  18. Bauer, J. F. (2009). Pharmaceutical Solids: Size, Shape, and Surface Area. Journal of Validation Technology, 37–44. Available at: http://www.ivtnetwork.com/sites/default/files/PharmSolids_01.pdf
  19. Merzlov, S., Lomova, N., Narizhniy, S., Snizhko, O., Voroshchuk, V. (2017). Investigation of the process of bee pollen comminution. EUREKA: Life Sciences, 5,39–44. doi: 10.21303/2504-5695.2017.00426
  20. Biyik, S., Aydin, M. (2015). The Effect of Milling Speed on Particle Size and Morphology of Cu25W Composite Powder. Acta Physica Polonica A, 127 (4), 1255–1260. doi: 10.12693/aphyspola.127.1255
  21. Sahoo, A., Roy, G. K. (2008). Correlations for the grindability of the ball mill as a measure of its performance. Asia-Pacific Journal of Chemical Engineering, 3 (2), 230–235. doi: 10.1002/apj.133
  22. Lomova, N. M., Narizhnyi, S. A., Snizhko, O. O. (2016). Pervynna pidhotovka apiproduktiv u biotekhnolohyi yohurtu «Medovyi». Naukovi dopovidi NUBiP Ukrainy, 7 (64). Available at: http://journals.nubip.edu.ua/index.php/Dopovidi/article/view/7717/7413
  23. Chen, Y., Zhang, B.-C., Sun, Y.-H., Zhang, J.-G., Sun, H.-J., Wei, Z.-J. (2015). Physicochemical properties and adsorption of cholesterol by okra (Abelmoschus esculentus) powder. Food Funct., 6 (12), 3728–3736. doi: 10.1039/c5fo00600g
  24. Zaiter, A., Becker, L., Karam, M.-C., Dicko, A. (2016). Effect of particle size on antioxidant activity and catechin content of green tea powders. Journal of Food Science and Technology, 53 (4), 2025–2032. doi: 10.1007/s13197-016-2201-4
  25. Otte, A., Carvajal, M. T. (2011). Assessment of Milling-Induced Disorder of Two Pharmaceutical Compounds. Journal of Pharmaceutical Sciences, 100 (5), 1793–1804. doi: 10.1002/jps.22415

Downloads

Published

2017-10-19

How to Cite

Merzlov, S., Lomova, N., Narizhniy, S., Snizhko, O., & Voroshchuk, V. (2017). Optimization of technology for shredding the bee pollen. Eastern-European Journal of Enterprise Technologies, 5(11 (89), 55–60. https://doi.org/10.15587/1729-4061.2017.110504

Issue

Section

Technology and Equipment of Food Production