Modeling a process of filling the mold during injection molding of polymeric parts

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.110820

Keywords:

mold, melt of polymer, velocity field, pressure field, estimated grid, seals

Abstract

We investigated the process of filling the molds used in injection molding with the molten polymer, particularly, the formation of lines of seals in the presence of several intake openings in the mold or when the melt flows round the obstacles. As a result of analysis of the designs of molds we established main causes of the low quality of molded products. It is shown that the presence of seals significantly reduces quality of the polymeric goods. Accordingly, it is recommended to design the molds so that it is possible to avoid formation of seals in the products. Alternatively, if this is not possible, it is necessary to ensure that the seals are absent in places that accept maximal loads.

In the present work, we developed a mathematical model of the dynamics of motion of a viscous fluid with free surface in the mold cavity. The model includes the Navier-Stokes equations, the equation of continuity and the Laplace equations. By solving the specified system of equations, we determined rate components of a two-dimensional flow and pressure of the melt in the process of filling a mold. Based on the application of the method of markers and cells, we carried out analytical studies into formation of the line of seals in the polymeric products made by injection molding. It is proven that the position of seals in the finished product depends on the geometry of the mold cavity and the location of intake openings and do not practically depend on the temperature parameters of the process. It was established that dependences of rate of the melt flow front on the height and width of the mold are non-linear in nature, which must be considered when estimating duration of technological cycle of injection molding.

The use of the results of present research makes it possible to reduce the cost of designing molds for producing polymeric products with improved operational properties.

In order to confirm adequacy of the mathematical model to actual processes, we conducted experimental research. A maximal deviation of experimental data from analytical data does not exceed 12 %

Author Biographies

Tetiana Kulik, Kyiv National University of Technologies and Design Nemirovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Electromechanical Systems

Oleh Synyuk, Khmelnytskyi National University Instytutska str., 11, Khmelnytskyi, Ukraine, 29016

PhD, Associate Professor

Department of Machinery and Apparatus

Borys Zlotenko, Kyiv National University of Technologies and Design Nemirovycha-Danchenka str., 2, Kyiv, Ukraine, 01011

Doctor of Technical Sciences, Professor, Head of Department

Department of Electromechanical Systems

References

  1. Ciofu, C., Mindru, D. T. (2013). Injection and micro injection of polymeric plastics materials: a review. International Journal of Modern Manufacturing Technologies, V (1), 49–68.
  2. Siva Kishore Babu, K., Koteswararao, B., Prema Kumar, P. S. (2016). Forming and shaping of plastic materials by using CNC machines. International journal of advancement in engineering technology, management and applied science, 03 (09), 74–89.
  3. Ozcelik, B. (2011). Optimization of injection parameters for mechanical properties of specimens with weld line of polypropylene using Taguchi method. International Communications in Heat and Mass Transfer. doi: 10.1016/j.icheatmasstransfer.2011.04.025
  4. Sun, X. J., Tibbenham, P., Zhou, J., Zeng, D., Huang, S., Lu, L., Su, X. (2017). Weld Line Factors for Thermoplastics. SAE Technical Paper Series. doi: 10.4271/2017-01-0481
  5. Wu, C.-H., Liang, W.-J. (2005). Effects of geometry and injection-molding parameters on weld-line strength. Polymer Engineering & Science, 45 (7), 1021–1030. doi: 10.1002/pen.20369
  6. Gilmore, G. D., Spencer, R. S. (1950). Role of pressure, temperature and time in the injection molding process. Modern Plastics, 37 (8), 143–151.
  7. Spencer, R. S., Gilmore, G. D. (1951). Some flow phenomena in the injection molding of polystyrene. Journal of Colloid Science, 6 (2), 118–132. doi: 10.1016/0095-8522(51)90032-3
  8. Beyer, C. E., Spencer, R. S. (1960). Rheology in Molding. Rheology, 505–551. doi: 10.1016/b978-0-12-395696-5.50019-8
  9. Pisipati, R., Baird, D. G. (1984). Correlation of Non-Linear Rheological Properties of Polymer Melts With Weld-Line Strength. Polymer Processing and Properties, 215–228. doi: 10.1007/978-1-4613-2781-3_21
  10. Chang, T. C., Faison, E. (1999). Optimization of weld line quality in injection molding using an experimental design approach. Journal of Injection Molding Technology, 2, 61–66.
  11. Turng, L.-S., Kharbas, H. (2003). Effect of process conditions on the weld-line strength and microstructure of microcellular injection molded parts. Polymer Engineering & Science, 43 (1), 157–168. doi: 10.1002/pen.10013
  12. Onken, J., Hopmann, C. (2016). Prediction of weld line strength in injection-moulded parts made of unreinforced amorphous thermoplastics. International Polymer Science and Technology, 43 (11), T/1–T/8.
  13. Mielewski, D. F., Bauer, D. R., Schmitz, P. J., Van Oene, H. (1998). Weld line morphology of injection molded polypropylene. Polymer Engineering & Science, 38 (12), 2020–2028. doi: 10.1002/pen.10371
  14. Xie, L., Zhu, D., Ziegmann, G., Steuernagel, L. (2010). Investigation on correlation between cold/hot weld line mechanical properties and micro injection molding processing parameters. NSTI-Nanotech 2010, 2, 292–295.
  15. Xie, L., Ziegmann, G., Jiang, B. (2009). Numerical simulation method for weld line development in micro injection molding process. Journal of Central South University of Technology, 16 (5), 774–780. doi: 10.1007/s11771-009-0129-9
  16. Dzulkipli, A. A., Azuddin, M. (2017). Study of the Effects of Injection Molding Parameter on Weld Line Formation. Procedia Engineering, 184, 663–672. doi: 10.1016/j.proeng.2017.04.135
  17. Shinde, M. P. P., Patil, S. S., Awati, S. S., Patil, A. S. (2016). Design of plastic injection mold using simulation technique for minimizing defect. International Research Journal of Engineering and Technology, 03 (10), 1004–1010.
  18. Deng, Y.-M., Zheng, D., Sun, B.-S., Zhong, H.-D. (2008). Injection Molding Optimization for Minimizing the Defects of Weld Lines. Polymer-Plastics Technology and Engineering, 47 (9), 943–952. doi: 10.1080/03602550802274555
  19. Perfilova, V. Yu. (2015). Proektirovanie press-form s pomoshch'yu noveyshih programmnyh sredstv s privlecheniem sistemy modelirovaniya processa lit'ya plastmass Autodesk Simulation Moldflow. Kompleksnye problemy razvitiya nauki, obrazovaniya i ekonomiki regiona, 2, 79–88.
  20. Mahov, S. I., Novikov, I. S., Kangin, M. V. (2013). Proektirovanie lit'evyh form s ispol'zovaniem sistem inzhenernogo analiza. Tekhnicheskie nauki – ot teorii k praktike, 17-1, 60–68.
  21. Kopeliovich, D. I., Kadushkina, S. A. (2016). Analiz vozmozhnostey modulya Solidworks Plastics dlya proektirovaniya press-form. Perspektivy razvitiya informacionnyh tekhnologiy, 30, 38–42.
  22. Tan, Y., Mohamad Ariff, Z., Khoo, G. L. (2017). Evaluation of Weld Line Strength in Low Density Polyethylene Specimens by Optical Microscopy and Simulation. Journal of Engineering Science, 13, 53–62. doi: 10.21315/jes2017.13.4
  23. Al'tzicer, V. S., Krasovskiy, V. N., Meerson, V. D.; Berestnev, V. A. (Ed.) (1987). Proizvodstvo obuvi iz polimernyh materialov. Leningrad: Himiya, 231.
  24. Veynberg, I. A. (1971). Izgotovlenie niza obuvi metodom lit'ya. Kozhevenno-obuvnaya promyshlennost', 7, 24–25.
  25. Shvarc, A. S., Kondrat'kov, E. F. (1978). Sovremennye materialy i ih primenenie v obuvnom proizvodstve. Moscow: Legkaya industriya, 224.
  26. Nikitina, L. L., Garipova, G. I., Gavrilova, O. E. (2011). Sovremennye polimernye materialy, primenyaemye dlya niza obuvi. Vestnik Kazanskogo tekhnologicheskogo universiteta, 6, 150–154.
  27. Musoev, S. S., Karpuhin, A. A., Andrianova, G. P. (1992). Poliolefinovye termoplastichnye elastomery – materialy dlya niza obuvi. Kozhevenno-obuvnaya promyshlennost', 6, 32–34.
  28. Brudnyy, R. N., Gromov, S. N. (1976). Proizvodstvo obuvi iz PVH metodom lit'ya pod davleniem. Leningrad: Himiya, 87.
  29. Emec, L. V., Vaynberg, V. M. (1985). Polimery v kozhevenno-obuvnoy promyshlennosti. Leningrad: LIGLP, 52.
  30. Astarita, Dzh., Maruchchi, Dzh. (1981). Osnovy gidromekhaniki nen'yutonovskih zhidkostey. Moscow: Mir, 310.
  31. Deyli, Dzh., Harleman, E. (1971). Mekhanika zhidkosti. Moscow: Energiya, 480.
  32. Temam, R. (1981). Uravnenie Nav'e-Stoksa. Teoriya i chislennyy analiz. Moscow: Mir, 408.
  33. Kochin, N. E., Kibel', I. A., Roze, N. V. (1963). Teoreticheskaya gidromekhanika. Ch. 2. Moscow: Fizmatgiz, 728.
  34. Loycyanskiy, L. G. (1978). Mekhanika zhidkosti i gaza. Moscow: Nauka, 736.
  35. Berezin, I. K., Levina, G. V. (1979). Metody rascheta techeniy so svobodnymi granicami. Reologicheskie svoystva polimernyh sistem. Sverdlovsk: UNC AN SSSR, 20–28.
  36. Vygodskiy, M. Ya. (1982). Spravochnik po vysshey matematike. Moscow: Nauka, 872.
  37. Korn, G., Korn, T. (1977). Spravochnik po matematike dlya nauchnyh rabotnikov. Moscow: Nauka, 720.
  38. Samarskiy, A. A. (1987). Vvedenie v chislennye metody. Moscow: Nauka, 288.
  39. Samarskiy, A. A., Nikolaev, E. S. (1981). Metody resheniy setochnyh uravneniy. Moscow: Mir, 626.
  40. Samarskiy, A. A. (1983). Teoriya raznostnyh skhem. Moscow: Nauka, 616.
  41. Vazov, V., Forsayt, Dzh. (1963). Raznostnye metody resheniya differencial'nyh uravneniy v chastnyh proizvodnyh. Moscow: Izd-vo inostr. lit., 487.
  42. Sharkovskiy, A. N. (1986). Raznostnye uravneniya i ih prilozheniya. Kyiv: Naukova dumka, 280.
  43. Yacenko, V. S. (1983). Metod drobnyh shagov. Kyiv: Vishcha shkola, 134.
  44. Demidovich, B. P., Maron, K. G. (1977). Chislennye metody analiza. Priblizhenie funkciy, differencial'noe i integral'nye ischisleniya. Moscow: Nauka, 368.
  45. Heygeman, L., Yang, D. (1986). Prikladnye iteracionnye metody. Moscow: Mir, 446.
  46. Lapshin, V. V. (1974). Osnovy pererabotki termoplastov lit'em pod davleniem. Moscow: Himiya, 270.

Downloads

Published

2017-10-24

How to Cite

Kulik, T., Synyuk, O., & Zlotenko, B. (2017). Modeling a process of filling the mold during injection molding of polymeric parts. Eastern-European Journal of Enterprise Technologies, 5(1 (89), 70–77. https://doi.org/10.15587/1729-4061.2017.110820

Issue

Section

Engineering technological systems