Study of the effect of thermobaric conditions on the process of formation of propane hydrate

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.111409

Keywords:

gas hydrates, gas bubble, thermophysical characteristics of gas-saturated liquid, heat exchange in two-phase medium, phase transformations

Abstract

The study presents results of the development of a mathematical model of an oscillating gas bubble. It takes into account inertial and thermodynamic components of oscillation of gas bubbles in a liquid, mass transfer processes near a surface of a bubble and phase transition processes in a liquid. Considering mentioned features in the mathematical model, it is possible to get values of temperatures of gas, liquid and solid phases, pressure of a gas medium and a size of a bubble, a rate of a side movement, localization and a rate of phase transitions in a liquid, intensity of heat and mass transfer processes at a bubble boundary and many other data at any time.

 We performed a series of estimating calculations of the hydrate formation of the propane-butane mixture with the help of the proposed mathematical model. We investigated the influence of initial temperature and pressure of the gas mixture on the hydrate formation process. We obtained graphs of the hydration formation and temperature regime of a gas bubble, distribution of temperature fields in a liquid under conditions of phase transition processes and accumulation of hydrate in separate layers of a liquid. The performed studies show that the whole period of hydrate formation consists of three parts: the initial heating of gas in a bubble, the period of oscillations and the period of stationary heat transfer. The maximum rate of hydrate formation is observed during the period of heating of a gas in a bubble. It has a short duration of 2÷40 μs, but it is the most productive. The duration of the oscillation period depends on thermobaric conditions and may exceed 200 μs. We established that there exists a region of gas temperatures where the rate of the hydrate formation is maximal.

We can use the proposed mathematical model to determine thermophysical characteristics of gas bubbles, liquid and steam in various technological processes associated with the formation of gas hydrates, dissolution of gases in liquid, hardening of foam, and others. The conducted study can be useful for optimization of technological processes connected with formation of gas hydrates.

Author Biographies

Аnatoliy Pavlenko, Kielce University of Technology Tysiacholittia panstva Polskoho str., 7, Kielce, Poland, 25-314

Doctor of Technical Sciences, Professor

Department of Building Physics and Renewable Energy

Bogdan Kutnyi, Poltava National Technical Yuri Kondratyuk University Pershotravnevyi ave., 24, Poltava, Ukraine, 36011

PhD, Associate Professor

Department of heat and gas supply, ventilation and heat and power engineering

Yurii Holik, Poltava National Technical Yuri Kondratyuk University Pershotravnevyi ave., 24, Poltava, Ukraine, 36011

PhD, Professor

Department of heat and gas supply, ventilation and heat and power engineering

References

  1. Yakushev, V. S., Kvon, V. G., Gerasimov, Yu. A., Istomin, V. A. (2008). Sovremennoe sostoyanie gazogidratnyh tekhnologiy. Moscow: OOO «IRC Gazprom», 88.
  2. Stern, L. A., Circone, S., Kirby, S. H., Durham, W. B. (2003). Temperature, pressure, and compositional effects on anomalous or "self" preservation of gas hydrates. Canadian Journal of Physics, 81 (1-2), 271–283. doi: 10.1139/p03-018
  3. Mosin, O. V. (2012). Fiziko-himicheskie osnovy opresneniya morskoy vody. Soznanie i fizicheskaya real'nost', 1, 19–30.
  4. Takeya, S., Ebinuma, T., Uchida, T., Nagao, J., Narita, H. (2002). Self-preservation effect and dissociation rates of CH4 hydrate. Journal of Crystal Growth, 237-239, 379–382. doi: 10.1016/s0022-0248(01)01946-7
  5. Pavlenko, А., Koshlak, H., Usenko, B. (2014). Basic principles of gas hydrate technologies. Metallurgical and Mining Industry, 3, 60–65.
  6. Behkish, A., Lemoine, R., Oukaci, R., Morsi, B. I. (2006). Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chemical Engineering Journal, 115 (3), 157–171. doi: 10.1016/j.cej.2005.10.006
  7. Shahrzad, H., Arturo, M., Phillip, S. (2007). Dynamic Simulation of Gas Hydrate Formation in an Agitated Three-Phase Slurry Reactor. The 12th International Conference on Fluidization – New Horizons in Fluidization Engineering, 329–336.
  8. Kulinchenko, V. R., Zavialov, V. L., Mysiura, T. H. (2007). Peredumovy stvorennia matematychnoi modeli – osnovni polozhennia i rivniannia rukhu Releia. Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohyi, 22, 36–41.
  9. Il'mov, D. N., Cherkasov, S. G. (2012). Teplofizicheskie processy pri szhatii parovogo puzyr'ka v zhidkom uglevodorode na osnove gomobaricheskoy modeli. Teplofizika vysokih temperatur, 50 (5), 676–684. Available at: http://www.mathnet.ru/links/a96357749ddc8f7cc5ff3dcf53c5493a/tvt396.pdf
  10. Shagapov, V. Sh., Koledin, V. V. (2013). K teorii rosta parovyh puzyr'kov v metastabil'noy zhidkosti. Teplofizika vysokih temperatur, 51 (4), 543–551. doi: 10.7868/s0040364413040212
  11. Aktershev, S. P., Ovchinnikov, V. V. (2013). Modelirovanie vskipaniya metastabil'noy zhidkosti pri nalichii frontov ispareniya. Sovremennaya nauka: issledovaniya, idei, rezul'taty, tekhnologi, 1, 77–82.
  12. Veretel'nik, T. I., Difuchin, Yu. N. (2008). Matematicheskoe modelirovanie kavitacionnogo potoka zhidkosti v himiko-tekhnologicheskoy sisteme. Visnyk ChDTU, 3, 82–85.
  13. Kulinchenko, V. R. Osnovy matematicheskogo modelirovaniya dinamiki rosta parovoy fazy. Available at: http://dspace.nuft.edu.ua/jspui/bitstream/123456789/2224/1/21.pdf
  14. Nigmatulin, R. I., Habeev, N. S. (1978). Dinamika i teplomassoobmen parogazovyh puzyr'kov s zhidkost'yu. Nekotorye voprosy mekhaniki sploshnoy sredy. Moscow: In-t mekhaniki MGU, 229–243.
  15. Dolinskiy, A. A., Ivanickiy, G. K. (1995). Teoreticheskoe obosnovanie principa diskretno-impul'snogo vvoda energii. Model' dinamiki odinochnogo parovogo puzyr'ka. Prom. teplotekhnika, 17 (5), 3–28.
  16. Pavlenko, А., Kutnyi, B., Abdullah, N. (2017). A study of phase transition processes features in liquid-gas systems. Eastern-European Journal of Enterprise Technologies, 4 (5 (88)), 43–50. doi: 10.15587/1729-4061.2017.108535
  17. Lambert, J. D. (1991). Computational Methods in Ordinary Differential Equations. Wiley, Chichester, 304.
  18. Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. New York: John Wiley & Sons, 482.
  19. Kushnir, S. V., Kost, M. V., Kozak, R. P. (2016). Barbotazhni khimichni efekty: yikh vydy, mekhanizmy vynyknennia ta heokhimichni proiavy. Voda i vodoochysni tekhnolohyi. Naukovo-tekhnichni visti, 3, 30–47.
  20. Semenov, M. E., Shic, E. Yu. (2013). Sintez gidratov gazov laboratornyh usloviyah. Ch. II. Tekhnicheskie nauki – ot teorii k praktike: sb. st. po mater. XVII mezhdunar. nauch.-prakt. konf. Novosibirsk: SibAK, 55–61.
  21. Okutani, K., Kuwabara, Y., Mori, Y. H. (2008). Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using methane and sodium alkyl sulfates. Chemical Engineering Science, 63 (1), 183–194. doi: 10.1016/j.ces.2007.09.012

Downloads

Published

2017-10-30

How to Cite

Pavlenko А., Kutnyi, B., & Holik, Y. (2017). Study of the effect of thermobaric conditions on the process of formation of propane hydrate. Eastern-European Journal of Enterprise Technologies, 5(5 (89), 43–50. https://doi.org/10.15587/1729-4061.2017.111409

Issue

Section

Applied physics