Study of the effect of thermobaric conditions on the process of formation of propane hydrate
DOI:
https://doi.org/10.15587/1729-4061.2017.111409Keywords:
gas hydrates, gas bubble, thermophysical characteristics of gas-saturated liquid, heat exchange in two-phase medium, phase transformationsAbstract
The study presents results of the development of a mathematical model of an oscillating gas bubble. It takes into account inertial and thermodynamic components of oscillation of gas bubbles in a liquid, mass transfer processes near a surface of a bubble and phase transition processes in a liquid. Considering mentioned features in the mathematical model, it is possible to get values of temperatures of gas, liquid and solid phases, pressure of a gas medium and a size of a bubble, a rate of a side movement, localization and a rate of phase transitions in a liquid, intensity of heat and mass transfer processes at a bubble boundary and many other data at any time.
We performed a series of estimating calculations of the hydrate formation of the propane-butane mixture with the help of the proposed mathematical model. We investigated the influence of initial temperature and pressure of the gas mixture on the hydrate formation process. We obtained graphs of the hydration formation and temperature regime of a gas bubble, distribution of temperature fields in a liquid under conditions of phase transition processes and accumulation of hydrate in separate layers of a liquid. The performed studies show that the whole period of hydrate formation consists of three parts: the initial heating of gas in a bubble, the period of oscillations and the period of stationary heat transfer. The maximum rate of hydrate formation is observed during the period of heating of a gas in a bubble. It has a short duration of 2÷40 μs, but it is the most productive. The duration of the oscillation period depends on thermobaric conditions and may exceed 200 μs. We established that there exists a region of gas temperatures where the rate of the hydrate formation is maximal.
We can use the proposed mathematical model to determine thermophysical characteristics of gas bubbles, liquid and steam in various technological processes associated with the formation of gas hydrates, dissolution of gases in liquid, hardening of foam, and others. The conducted study can be useful for optimization of technological processes connected with formation of gas hydrates.
References
- Yakushev, V. S., Kvon, V. G., Gerasimov, Yu. A., Istomin, V. A. (2008). Sovremennoe sostoyanie gazogidratnyh tekhnologiy. Moscow: OOO «IRC Gazprom», 88.
- Stern, L. A., Circone, S., Kirby, S. H., Durham, W. B. (2003). Temperature, pressure, and compositional effects on anomalous or "self" preservation of gas hydrates. Canadian Journal of Physics, 81 (1-2), 271–283. doi: 10.1139/p03-018
- Mosin, O. V. (2012). Fiziko-himicheskie osnovy opresneniya morskoy vody. Soznanie i fizicheskaya real'nost', 1, 19–30.
- Takeya, S., Ebinuma, T., Uchida, T., Nagao, J., Narita, H. (2002). Self-preservation effect and dissociation rates of CH4 hydrate. Journal of Crystal Growth, 237-239, 379–382. doi: 10.1016/s0022-0248(01)01946-7
- Pavlenko, А., Koshlak, H., Usenko, B. (2014). Basic principles of gas hydrate technologies. Metallurgical and Mining Industry, 3, 60–65.
- Behkish, A., Lemoine, R., Oukaci, R., Morsi, B. I. (2006). Novel correlations for gas holdup in large-scale slurry bubble column reactors operating under elevated pressures and temperatures. Chemical Engineering Journal, 115 (3), 157–171. doi: 10.1016/j.cej.2005.10.006
- Shahrzad, H., Arturo, M., Phillip, S. (2007). Dynamic Simulation of Gas Hydrate Formation in an Agitated Three-Phase Slurry Reactor. The 12th International Conference on Fluidization – New Horizons in Fluidization Engineering, 329–336.
- Kulinchenko, V. R., Zavialov, V. L., Mysiura, T. H. (2007). Peredumovy stvorennia matematychnoi modeli – osnovni polozhennia i rivniannia rukhu Releia. Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohyi, 22, 36–41.
- Il'mov, D. N., Cherkasov, S. G. (2012). Teplofizicheskie processy pri szhatii parovogo puzyr'ka v zhidkom uglevodorode na osnove gomobaricheskoy modeli. Teplofizika vysokih temperatur, 50 (5), 676–684. Available at: http://www.mathnet.ru/links/a96357749ddc8f7cc5ff3dcf53c5493a/tvt396.pdf
- Shagapov, V. Sh., Koledin, V. V. (2013). K teorii rosta parovyh puzyr'kov v metastabil'noy zhidkosti. Teplofizika vysokih temperatur, 51 (4), 543–551. doi: 10.7868/s0040364413040212
- Aktershev, S. P., Ovchinnikov, V. V. (2013). Modelirovanie vskipaniya metastabil'noy zhidkosti pri nalichii frontov ispareniya. Sovremennaya nauka: issledovaniya, idei, rezul'taty, tekhnologi, 1, 77–82.
- Veretel'nik, T. I., Difuchin, Yu. N. (2008). Matematicheskoe modelirovanie kavitacionnogo potoka zhidkosti v himiko-tekhnologicheskoy sisteme. Visnyk ChDTU, 3, 82–85.
- Kulinchenko, V. R. Osnovy matematicheskogo modelirovaniya dinamiki rosta parovoy fazy. Available at: http://dspace.nuft.edu.ua/jspui/bitstream/123456789/2224/1/21.pdf
- Nigmatulin, R. I., Habeev, N. S. (1978). Dinamika i teplomassoobmen parogazovyh puzyr'kov s zhidkost'yu. Nekotorye voprosy mekhaniki sploshnoy sredy. Moscow: In-t mekhaniki MGU, 229–243.
- Dolinskiy, A. A., Ivanickiy, G. K. (1995). Teoreticheskoe obosnovanie principa diskretno-impul'snogo vvoda energii. Model' dinamiki odinochnogo parovogo puzyr'ka. Prom. teplotekhnika, 17 (5), 3–28.
- Pavlenko, А., Kutnyi, B., Abdullah, N. (2017). A study of phase transition processes features in liquid-gas systems. Eastern-European Journal of Enterprise Technologies, 4 (5 (88)), 43–50. doi: 10.15587/1729-4061.2017.108535
- Lambert, J. D. (1991). Computational Methods in Ordinary Differential Equations. Wiley, Chichester, 304.
- Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. New York: John Wiley & Sons, 482.
- Kushnir, S. V., Kost, M. V., Kozak, R. P. (2016). Barbotazhni khimichni efekty: yikh vydy, mekhanizmy vynyknennia ta heokhimichni proiavy. Voda i vodoochysni tekhnolohyi. Naukovo-tekhnichni visti, 3, 30–47.
- Semenov, M. E., Shic, E. Yu. (2013). Sintez gidratov gazov laboratornyh usloviyah. Ch. II. Tekhnicheskie nauki – ot teorii k praktike: sb. st. po mater. XVII mezhdunar. nauch.-prakt. konf. Novosibirsk: SibAK, 55–61.
- Okutani, K., Kuwabara, Y., Mori, Y. H. (2008). Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using methane and sodium alkyl sulfates. Chemical Engineering Science, 63 (1), 183–194. doi: 10.1016/j.ces.2007.09.012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Аnatoliy Pavlenko, Bogdan Kutnyi, Yurii Holik
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.