Wave propagation in a three-layer semi-infinite hydrodynamic system with a rigid lid

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.111941

Keywords:

interaction of waves, three-layer hydrodynamic system, amplitude of waves, ratio of amplitudes

Abstract

Research into propagation and interaction of waves in a three-layer hydrodynamic system is one of the relevant problems of modern theoretical and experimental hydrodynamics. The authors studied propagation and interaction of waves along contact surfaces of the three-layer hydrodynamic system "liquid half-space – layer – layer with a rigid lid". By applying a method of large-scale approximations, the first three linear approximations of the correspondent weakly nonlinear problem were obtained. The structure of wave motions on contact surfaces was explored. Dependence of amplitudes of waves-responses on contact surfaces at various geometrical and physical parameters was analyzed. In particular, for large values of thickness of the upper layer, it was found that a change in value of the wave number leads to rapid convergence of amplitudes of waves-responses to the common limited value. The authors showed the need for a detailed study of the limited case in the absence of density jump, in which one of the solutions of dispersion equation tends to zero. Results of the present research can be used in the design of algorithms for detection of wave motions in various liquid media. 

Author Biographies

Olga Avramenko, Volodymyr Vynnychenko Central Ukrainian State Pedagogical University Shevchenka str., 1, Kropyvnytskyi, Ukraine, 25006

Doctor of Physical and Mathematical Sciences, Professor, Head of Department

Department of Applied Mathematics, Statistics and Economics

Maria Lunyova, Volodymyr Vynnychenko Central Ukrainian State Pedagogical University Shevchenka str., 1, Kropyvnytskyi, Ukraine, 25006

Postgraduate student

Department of Applied Mathematics, Statistics and Economics

Volodymyr Naradovyi, Volodymyr Vynnychenko Central Ukrainian State Pedagogical University Shevchenka str., 1, Kropyvnytskyi, Ukraine, 25006

PhD, Senior Lecturer

Department of Applied Mathematics, Statistics and Economics

References

  1. Wang, Y., Tice, I., Kim, C. (2013). The Viscous Surface-Internal Wave Problem: Global Well-Posedness and Decay. Archive for Rational Mechanics and Analysis, 212 (1), 1–92. doi: 10.1007/s00205-013-0700-2
  2. Van Haren, H. (2014). High-frequency internal wave motions at the ANTARES site in the deep Western Mediterranean. Ocean Dynamics, 64 (4), 507–517. doi: 10.1007/s10236-014-0702-0
  3. Fan, K., Fu, B., Gu, Y., Yu, X., Liu, T., Shi, A. et. al. (2015). Internal wave parameters retrieval from space-borne SAR image. Frontiers of Earth Science, 9 (4), 700–708. doi: 10.1007/s11707-015-0506-7
  4. Hong, Y., Nicholls, D. P. (2017). A high-order perturbation of surfaces method for scattering of linear waves by periodic multiply layered gratings in two and three dimensions. Journal of Computational Physics, 345, 162–188. doi: 10.1016/j.jcp.2017.05.017
  5. Massel, S. R. (2016). On the nonlinear internal waves propagating in an inhomogeneous shallow sea. Oceanologia, 58 (2), 59–70. doi: 10.1016/j.oceano.2016.01.005
  6. Li, Q. (2014). Numerical assessment of factors affecting nonlinear internal waves in the South China Sea. Progress in Oceanography, 121, 24–43. doi: 10.1016/j.pocean.2013.03.006
  7. Singh, A. K., Lakshman, A. (2016). Effect of loosely bonded undulated boundary surfaces of doubly layered half-space on the propagation of torsional wave. Mechanics Research Communications, 73, 91–106. doi: 10.1016/j.mechrescom.2016.02.007
  8. Zhu, H., Wang, L., Avital, E. J., Tang, H., Williams, J. J. R. (2016). Numerical simulation of interaction between internal solitary waves and submerged ridges. Applied Ocean Research, 58, 118–134. doi: 10.1016/j.apor.2016.03.017
  9. Rosi, G., Nguyen, V.-H., Naili, S. (2015). Surface waves at the interface between an inviscid fluid and a dipolar gradient solid. Wave Motion, 53, 51–65. doi: 10.1016/j.wavemoti.2014.11.004
  10. Smith, S., Crockett, J. (2014). Experiments on nonlinear harmonic wave generation from colliding internal wave beams. Experimental Thermal and Fluid Science, 54, 93–101. doi: 10.1016/j.expthermflusci.2014.01.012
  11. Deconinck, B., Trichtchenko, O. (2014). Stability of periodic gravity waves in the presence of surface tension. European Journal of Mechanics – B/Fluids, 46, 97–108. doi: 10.1016/j.euromechflu.2014.02.010
  12. Akers, B. F., Ambrose, D. M., Pond, K., Wright, J. D. (2016). Overturned internal capillary-gravity waves. European Journal of Mechanics – B/Fluids, 57, 143–151. doi: 10.1016/j.euromechflu.2015.12.006
  13. Vitousek, S., Fringer, O. B. (2014). A nonhydrostatic, isopycnal-coordinate ocean model for internal waves. Ocean Modelling, 83, 118–144. doi: 10.1016/j.ocemod.2014.08.008
  14. Tahvildari, N., Kaihatu, J. M., Saric, W. S. (2016). Generation of long subharmonic internal waves by surface waves. Ocean Modelling, 106, 12–26. doi: 10.1016/j.ocemod.2016.07.004
  15. Shiryaeva, S. O., Grigor’ev, A. I., Yakovleva, L. S. (2015). On the surface and internal gravitational waves in a three-layer immiscible liquid. Technical Physics, 60 (12), 1772–1777. doi: 10.1134/s1063784215120208
  16. Selezov, I. T., Avramenko, O. V., Gurtovyi, Y. V., Naradovyi, V. V. (2010). Nonlinear interaction of internal and surface gravity waves in a two-layer fluid with free surface. Journal of Mathematical Sciences, 168 (4), 590–602. doi: 10.1007/s10958-010-0010-2
  17. Avramenko, O. V., Naradovyi, V. V., Selezov, I. T. (2015). Conditions of Wave Propagation in a Two-Layer Liquid with Free Surface. Journal of Mathematical Sciences, 212 (2), 131–141. doi: 10.1007/s10958-015-2654-4
  18. Avramenko, O. V., Naradovyi, V. V. (2015). Analysis of propagation of weakly nonlinear waves in a two-layer fluid with free surface. Eastern-European Journal of Enterprise Technologies, 4 (7 (76)), 39–44. doi: 10.15587/1729-4061.2015.48282
  19. Avramenko, O. V., Naradovyi, V. V., Selezov, I. T. (2016). Enerhiya vnutrishnikh i poverkhnevykh khvylovykh rukhiv u dvosharoviy hidrodynamichniy systemi. Matematychni metody ta fizyko-mekhanichni polia, 59 (1), 111–120.
  20. Nayfeh, A. H. (1976). Nonlinear Propagation of Wave-Packets on Fluid Interfaces. Journal of Applied Mechanics, 43 (4), 584–588. doi: 10.1115/1.3423936
  21. Selezov, I. T., Avramenko, O. V. (2001). Evolyuciya nelineynyh volnovyh paketov v gidrodinamicheskoy sisteme "sloy-poluprostranstvo" s uchetom poverhnostnogo natyazheniya. Matematychni metody ta fizyko-mekhanichni polia, 44 (2), 113–122.

Downloads

Published

2017-10-30

How to Cite

Avramenko, O., Lunyova, M., & Naradovyi, V. (2017). Wave propagation in a three-layer semi-infinite hydrodynamic system with a rigid lid. Eastern-European Journal of Enterprise Technologies, 5(5 (89), 58–66. https://doi.org/10.15587/1729-4061.2017.111941

Issue

Section

Applied physics