Research into esterification of mixture of lower dicarboxylic acids by 2-ethylhexan-1-ol in the presence of p-toluensulfonic acid

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.114324

Keywords:

esterification, lower dicarboxylic acids, 2-ethylhexan-1-ol, p-toluensulfonic acid, diesters.

Abstract

Regularities of esterification of the mixture of lower dicarboxylic acids (succinic, glutaric, adipic) by 2-ethylhexan-1-ol in the presence of catalysts – p-toluensulfonic and sulfuric acids under non-stationary conditions were studied. It was found that in the presence of mineral acid, the reaction flows at a lower rate. Application of benzene as a substance that facilitates separation of water, formed in the esterification reaction, makes it possible, due to a lower reaction temperature, to decrease energy consumption of the process at an increase in conversion of dicarboxylic acids from 95.8 to 99.5 %. It was shown that the use of activated carbon of different brands simultaneously with catalysis by p-toluensulfonic acid with virtually the same effectiveness can decrease chromaticity intensity of esterification products by more than three times. The use of finely dispersed activated carbon 208CP and DCL 200 compared with coarse-grained activated carbon BAU-A additionally provides higher intensity of esterification reaction due to improvement of removal of water from the reaction mixture. It was found that an increase in the content of activated carbon DLC 200 by more than 0.3 % by weight in the reaction mixture contributes to a sharp decrease in the process intensity. This influence is explained by neutralization of a part of the catalysts by alkaline components of activated carbon, which decreases its active concentration and inhibits the reaction. Optimum conditions of the esterification process were proposed. The authors determined dependences of density and kinematic viscosity of the mixture of diesters of succinic, glutaric and adipic acids, and 2-ethylhexan-1-ol, separated from the esterification reaction products, on temperature and described them with regression equations

Author Biographies

Stepan Melnyk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of Technology of Organic Products

Yuriy Melnyk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Technology of Organic Products

Irena Nykulyshyn, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of Organic Products Technology

Liliya Shevchuk, Lviv Polytechnic National University S. Bandery str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of Technology of Organic Products

References

  1. FlexiSolv® solvent solutions – The Balanced Alternative. Available at: http://flexisolv.com/en/index.html
  2. Levanova, S. V., Gerasimenko, V. I., Gerasimenko, I. L. et. al. (2006). Sintez slozhnyh efirov iz zhidkih othodov proizvodstva kaprolaktama. Rossiyskiy Himicheskiy Zhurnal, L (3), 37–42.
  3. Nafikova, R. F., Rahmatullina, Zh. F., Rahimkulova, A. A. et. al. (2006). Poluchenie ftalatnogo plastifikatora s ispol'zovaniem kubovyh ostatkov butilovyh spirtov. Bashk. him. zhurnal, 13 (3), 60–62.
  4. Enyutina, M. V., Petyhin, Yu. M. (2003). Nekotorye aspekty reaktsii eterifikatsii spirtovyh othodov pishchevyh i neftekhimicheskih proizvodstv. Materialy 41 otchetnoy nauchnoy konferentsii za 2002 god. Voronezh: Izd-vo VGTA, 207–208.
  5. DOA – dioktiladipinat. Available at: http://rpch.ru/katalog/plastifikatory/doa-dioktiladipinat/
  6. Altnau, G. G. (2000). Alternative Lösemittel: Mehr Mut zum Wechseln. Git Sicherheit+Management, 2, 178–179.
  7. Otera, J., Nishikido, J. (2010). Esterification: Methods, Reactions, and Applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Second, Completely Revised, and Enlarged Edition, 374. doi: 10.1002/9783527627622
  8. Baghernejad, B. (2011). Application of p-toluenesulfonic Acid (PTSA) in Organic Synthesis. Current Organic Chemistry, 15 (17), 3091–3097. doi: 10.2174/138527211798357074
  9. Sakakura, A., Koshikari, Y., Ishihara, K. (2008). Open-air and solvent-free ester condensation catalyzed by sulfonic acids. Tetrahedron Letters, 49 (34), 5017–5020. doi: 10.1016/j.tetlet.2008.06.058
  10. Kriska, C. E., Modra, D. (2012). The efficacy of some catalysts used in synthesis of phthalates. Annals of West University of Timisoara. Series of Chemistry, 21 (2), 47–56.
  11. Ren, Y. M., Wu, Z. C., Yang, R. C., Tao, T. X., Shao, J. J., Gao, Y. G. et. al. (2013). A Simple Procedure for the Esterification and Transesterification Using p-Toluene Sulfonic Acid as Catalyst. Advanced Materials Research, 781-784, 259–262. doi: 10.4028/www.scientific.net/amr.781-784.259
  12. Wang, J., Gu, S., Pang, N., Wang, F., Wu, F. (2013). A study of esterification of caffeic acid with methanol using p-toluenesulfonic acid as a catalyst. Journal of the Serbian Chemical Society, 78 (7), 1023–1034. doi: 10.2298/jsc120802101w
  13. Melnyk, S. R., Nykulyshyn, I. Ye., Solod, M. I. (2015). Oderzhannia sumishei alkiltsykloheksyladypinativ spyrtiv S4–S5. Visnyk Skhidnoukrainskoho Natsionalnoho universytetu im. Volodymyra Dalia, 7 (224), 19–24
  14. Pacheco, B. S., Nunes, C. F. P., Rockembach, C. T., Bertelli, P., Mesko, M. F., Roesch-Ely, M. et. al. (2014). Eco-friendly synthesis of esters under ultrasound withp-toluenesulfonic acid as catalyst. Green Chemistry Letters and Reviews, 7 (3), 265–270. doi: 10.1080/17518253.2014.941950
  15. Barshteyn, R. S., Kirilovich, V. I., Nosovskiy, Yu. E. (1982). Plastifikatory dlya polimerov. Moscow: Himiya, 200.
  16. Melnyk, S. R., Melnyk, Yu. R., Kachmar, N. Ya., Reutskyi, V. V. (2005). Syntez diesteriv na osnovi spyrtiv S4–S5. Visnyk Natsionalnoho universytetu „Lvivska politekhnika”, 529, 128–130.
  17. Ekofil'tr-Sorbosgrup. Aktivirovannyy ugol' Chemviron Carbon. Available at: http://activcarbon.com.ua/category/21.html
  18. Methodology for Lipids. Estimation of free fatty acids. Available at: http://www.biocyclopedia.com/index/plant_protocols/lipids/Estimation_of_free_fatty_acids.php
  19. Technical Data Sheet Eastman™ 2-Ethylhexanol. Available at: http://ws.eastman.com/ProductCatalogApps/PageControllers/ProdDatasheet_PC.aspx?product=71000124
  20. Ekofil'tr-Sorbosgrup. Aktivirovannyy ugol' 208CP. Available at: http://activcarbon.com.ua/product/32.html
  21. SORBIS GROUP. Sorbenty tol'ko vysshego kachestva. Ugol' aktivirovannyy (BAU-A). Available at: http://sorbis-group.com/products/ugol-aktivirovan/ugol-aktivirovan-bau-a.php
  22. Melnyk, S., Dzinyak, B. (2015). Selectivity of Formation and Yield of Dicarboxylic Acid Mono- and Diesters under Stationary Conditions. Chemistry & Chemical Technology, 9 (3), 325–332. doi: 10.23939/chcht09.03.325

Downloads

Published

2017-11-08

How to Cite

Melnyk, S., Melnyk, Y., Nykulyshyn, I., & Shevchuk, L. (2017). Research into esterification of mixture of lower dicarboxylic acids by 2-ethylhexan-1-ol in the presence of p-toluensulfonic acid. Eastern-European Journal of Enterprise Technologies, 6(6 (90), 10–16. https://doi.org/10.15587/1729-4061.2017.114324

Issue

Section

Technology organic and inorganic substances