Estimation of the adaptability of automobiles to operation under winter conditions based on the engine cooling rate

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.116317

Keywords:

winter operating conditions, automobile engine cooling, cooling rate, vehicle adaptability

Abstract

In the course of the present study we devised an indicator of the adaptability of automobiles to operation under winter conditions based on the engine cooling rate, and a procedure of its estimation. A three-level grading assessment of the adaptability of automobiles to operation under winter conditions based on the engine cooling rate is proposed. We established an exponential form of the mathematical model for a change in the engine cooling rate, which takes into consideration speed of the wind that blows over the engine, its mass and heat insulation, as well as arrangement density in the under-hood space.

Numerical values for the parameters of the mathematical model were determined.

Results of the research allow us to estimate the limits of operational conditions of the rational use of automobiles when cooling rate of an idle engine does not exceed the critical value, and, therefore, fuel consumption used by the engine to maintain a temperature mode under given operating conditions during a short stop is minimal. 

Author Biographies

Viacheslav Tiulkin, Tyumen Industrial University Volodarskogo str., 38, Tyumen, Russia, 625000

PhD, Associate Professor

Department of Automotive and Technological Machines Service

Irina Titla, Tyumen Industrial University Volodarskogo str., 38, Tyumen, Russia, 625000

PhD, Associate Professor

Department of Automotive and Technological Machines Service

References

  1. Dedyukin, V. V., Reznik, L. G., Vilenskiy, L. I. et. al. (1977). Temperaturnyy rezhim osnovnyh agregatov i toplivnaya ekonomichnost' avtomobiley. Problemy adaptatsii avtomobiley k surovym klimaticheskim usloviyam Severa i Sibiri, 20–29.
  2. Abram, C., Fond, B., Beyrau, F. (2018). Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles. Progress in Energy and Combustion Science, 64, 93–156. doi: 10.1016/j.pecs.2017.09.001
  3. Dascalescu, S.-C.-D., Receanu, M. (2013). Air Flow Control Servomechanism for Cooling the Radiator of a Car Engine. SAE Technical Paper Series. doi: 10.4271/2013-01-1296
  4. Lin, C., Saunders, J. W., Watkins, S. (1997). Effect of Cross-Winds on Motor Car Engine Cooling. SAE Technical Paper Series. doi: 10.4271/970138
  5. Tharayi, R. A., Pol, S. (2009). Development of a Cost Effective Power Train Cooling System for a Passenger Car with Rear Engine. SAE Technical Paper Series. doi: 10.4271/2009-01-0169
  6. Charkov, S. T. (1989). Obobshchennaya otsenka prisposoblennosti avtomobiley k osobym usloviyam ekspluatatsii. Vol. 2. Tez. dokl. 2-oy Vsesoyuznoy nauch. konf. Neft' i gaz Zapadnoy Sibiri. Tyumen', 171.
  7. Reznik, L. G. (1974). Koeffitsient adaptatsii avtomobiley. Avtomobil'nyy transport, 27, 3–9.
  8. Buyanov, E. V. (1970). Transport dlya severa. Moscow: Transport, 36.
  9. Stepanov, O. A. (Ed.) (1997). Teploenergetika pri ekspluatatsii transportnyh sredstv v neftegazodobyvayushchih rayonah Zapadnoy Sibiri. Moscow: Nedra, 269.
  10. Kolchin, A. I., Demidov, V. P. (1980). Raschet avtomobil'nyh i transportnyh dvigateley. Moscow: Vyssh. shkola, 400.
  11. Pang, S. C., Kalam, M. A., Masjuki, H. H., Hazrat, M. A. (2012). A review on air flow and coolant flow circuit in vehicles’ cooling system. International Journal of Heat and Mass Transfer, 55 (23-24), 6295–6306. doi: 10.1016/j.ijheatmasstransfer.2012.07.002
  12. Chen, X., Yu, X., Lu, Y., Huang, R., Liu, Z., Huang, Y., Roskilly, A. P. (2017). Study of different cooling structures on the thermal status of an Internal Combustion Engine. Applied Thermal Engineering, 116, 419–432. doi: 10.1016/j.applthermaleng.2017.01.037
  13. Isachenko, V. P., Osipova, V. A., Sukomel, A. S. (1981). Teploperedacha. Moscow: Energoizdat, 416.
  14. Kast, W. (1974). Convective heat and mass transfer – a Uniform representation for flow channels and flow-around bodies of any shape and arrangement. Berlin: Springer-Verlag.
  15. Kondrat'ev, G. M. (1954). Regulyarnyy teplovoy rezhim. Moscow: GITTL, Gostekhizdat, 408.
  16. Zukauskas, A. (1987). Heat Transfer in Turbulent Fluid flows. Berlin: Springer.
  17. Churchill, S. (2002). Free convection around immersed bodies. New York: Begell House.
  18. Cebeci, T., Bradshaw, P. (1988). Physical and Computational Aspects of Convective Heat Transfer. New York: Springer, 1988. doi: 10.1007/978-1-4612-3918-5
  19. Datla, S., Sahu, P., Roh, H.-J., Sharma, S. (2013). A Comprehensive Analysis of the Association of Highway Traffic with Winter Weather Conditions. Procedia – Social and Behavioral Sciences, 104, 497–506. doi: 10.1016/j.sbspro.2013.11.143
  20. Zaharov, N. S., Manyashin, A. V., Titla, I. M., Tyul'kin, V. A. (2015). Vliyanie rezhimov progreva avtomobil'nogo dvigatelya zimoy na raskhod topliva. Tyumen': TyumGNGU, 149.
  21. Tyul'kin, V. A., Ertman, S. A. (2002). Metodika eksperimental'nyh issledovaniy po opredeleniyu tempov progreva dvigateley avtomobiley. Problemy ekspluatatsii transportnyh sistem v surovyh usloviyah: Mater. Mezhdunar. nauch.-prakt. konf. Ch. 3. Tyumen': TyumGNGU, 131–134.
  22. Zaharov, N. S. (1999). Programma «REGRESS». Rukovodstvo pol'zovatelya. Tyumen': TyumGNGU, 39.
  23. Vedenyapin, G. V. (1967). Obshchaya metodika eksperimental'nogo issledovaniya i obrabotki opytnyh dannyh. Moscow: Kolos, 159.
  24. Gmurman, V. E. (1998). Teoriya veroyatnostey i matematicheskaya statistika. Moscow: Vyashchaya shkola, 479.

Downloads

Published

2017-11-27

How to Cite

Tiulkin, V., & Titla, I. (2017). Estimation of the adaptability of automobiles to operation under winter conditions based on the engine cooling rate. Eastern-European Journal of Enterprise Technologies, 6(1 (90), 44–50. https://doi.org/10.15587/1729-4061.2017.116317

Issue

Section

Engineering technological systems