Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.118213

Keywords:

waste nanomaterials, thermo-oxidative decomposition of polymer, atmospheric air, identification of toxic substances

Abstract

We studied the processes of thermo-oxidative decomposition of polymer synthetic waste material with nanoparticles on the example of one of widely spread polymers – synthetic nitron fiber.

We carried out a study on the migration of decomposition products and nanoparticles into the environment on a simulation model. We heated the nitronic fibrous material in the temperature range of 150...300 ºС in the presence of oxygen. We stretched the material under investigation until the appearance of fiber breaks. The time of the experiment varied from three to thirty minutes. The REM image of nitron nanofibres obtained by heating the material to 200 °C for 25 minutes demonstrates that fibers are densely packed nanothreads of different length with diameters from 50 to 150 nm. This indicates instability and fragility of the material obtained and the possibility of manifestation of quantum-dimensional effects.

We experimentally established gaseous substances, which were released during thermo-oxidative decomposition of polymers, and their concentration, depending on the process temperature on the example of a nitron. Thus, we can consider ammonia and hydrogen cyanide as substances-indicators of latent processes of combustion (smoldering) of materials in a body of a landfill. We need to have a high-precision method of gas analysis to prevent the development of an emergency, since the release of substances occurs already at 100 °C, but in low concentrations. We proposed a remote identification method with a use of a laser complex.

Author Biographies

Sergij Vambol, National University Of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Professor, Head of Department

Department of Applied Mechanics

Viola Vambol, National University Of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Doctor of Technical Sciences, Associate Professor

Department of Labour Protection and Technogenic and Ecological Safety

Igor Bogdanov, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Ukraine, 71100

Doctor of Pedagogical Sciences, Professor, Rector

Yana Suchikova, Berdyansk State Pedagogical University Schmidta str., 4, Berdyansk, Ukraine, 71100

PhD, Associate Professor

Department of Vocational Education

Nina Rashkevich, National University Of Civil Protection of Ukraine Chernyshevska str., 94, Kharkiv, Ukraine, 61023

Postgraduate student

Department of Applied Mechanics

References

  1. Golinko, V. I., Luts, I. O., Yavorskaya, Ye. A. (2012). Reserch of air and dust balance in inclined shaft of the mine No. 9-10 at Marganetskiy Dressing Plant. Scientific Bulletin of National Mining University, 3, 98–101.
  2. Voitiuk, Y. Y., Kuraieva, I. V., Kroik, A. A., Pavlychenko, A. V. (2014). Ecological and geochemical assessment of the soil contamination levels in the areas of metallurgical enterprises operation. Scientific Bulletin of National Mining University, 4, 45–51.
  3. Vambol', V. V., Kostyuk, V. E., Kirilash, E. I. (2015). Mathematical description of the cooling process of generating gas during a waste disposal. Technology audit and production reserves, 2 (4 (22)), 23–29. doi: 10.15587/2312-8372.2015.40467
  4. Jadhao, S. B., Shingade, S. G., Pandit, A. B., Bakshi, B. R. (2017). Bury, burn, or gasify: assessing municipal solid waste management options in Indian megacities by exergy analysis. Clean Technologies and Environmental Policy, 19 (5), 1403–1412. doi: 10.1007/s10098-017-1338-9
  5. Vambol', V. V. (2015). Modelirovanie gazodinamicheskih protsessov ohlazhdeniya generatornogo gaza v ustanovke dlya utilizatsii othodov. Tekhnologii tekhnosfernoy bezopasnosti: nnternet-zhurnal, 1 (59). Available at: http://agps-2006.narod.ru/ttb/2015-1/17-01-15.ttb.pdf
  6. Vambol, V. (2016). Numerical integration of the process of cooling gas formed by thermal recycling of waste. Eastern-European Journal of Enterprise Technologies, 6 (8 (84)), 48–53. doi: 10.15587/1729-4061.2016.85455
  7. Janajreh, I., Raza, S. S., Valmundsson, A. S. (2013). Plasma gasification process: Modeling, simulation and comparison with conventional air gasification. Energy Conversion and Management, 65, 801–809. doi: 10.1016/j.enconman.2012.03.010
  8. Mozafari, A., Farshchi Tabrizi, F., Farsi, M., Seyed Mousavi, S. A. H. (2017). Thermodynamic modeling and optimization of thermolysis and air gasification of waste tire. Journal of Analytical and Applied Pyrolysis, 126, 415–422. doi: 10.1016/j.jaap.2017.04.001
  9. Vambol, S., Shakhov, Y., Vambol, V., Petukhov, I. (2016). A mathematical description of the separation of gas mixtures generated by the thermal utilization of waste. EasternEuropean Journal of Enterprise Technologies, 1 (2 (79)), 35–41. doi: 10.15587/1729-4061.2016.60486
  10. Vambol', S. A., Shahov, Yu. V., Vambol', V. V., Petuhov, I. I. (2016). Mathematical description of processes in separation unit for gas mixtures during disposal of waste. Technology audit and production reserves, 3 (3 (29)), 62–67. doi: 10.15587/2312-8372.2016.70688
  11. Vambol', V. V., Rashkevich, A. S., Rashkevich, N. V. (2016). Analiz osobennostey ekologicheskogo monitoringa atmosfernogo vozduha v zone chrezvychaynyh situatsiy tekhnogennogo haraktera. Visnyk NTU «KhPI», 49 (1221), 85–88. Available at: http://repositsc.nuczu.edu.ua/bitstream/123456789/1591/1/85-89.pdf
  12. Rashkevich, N. V. (2017). Issledovanie sostava produktov goreniya sinteticheskogo volokna. East journal of security studies, 1, 194–201.
  13. Yamaguchi, S. (2015). Incineration of waste containing nanomaterial. Environment Policy Committee, 14.
  14. Finansirovanie i rynok (2011). PersT. Available at: http://perst.issp.ras.ru/Control/Inform/perst/2011/11_11_12/index.htm
  15. Watson-Wright, C., Singh, D., Demokritou, P. (2017). Toxicological implications of released particulate matter during thermal decomposition of nano-enabled thermoplastics. NanoImpact, 5, 29–40. doi: 10.1016/j.impact.2016.12.003
  16. Popovich, V., Kucheryaviy, V. (2012). Fire hazard of spontaneous landfills and solid waste landfills. Fire safety, 21, 140–147.
  17. Shcherbina, N., Akimova, А., Biryukov, V. et. al. (2008). Structural changes in the modified copolymer of polyacrylonitrile. Chemical fibers, 6, 14–16.
  18. Bychkova, E., Shcherbina, N., Panova, L. (2015). Modified polyacrylonitrile fiber. The young scientist, 24.1, 13–15.
  19. Suchikova, Y. O. (2017). Sulfide Passivation of Indium Phosphide Porous Surfaces. Journal of Nano- and Electronic Physics, 9 (1), 01006-1–01006-4. doi: 10.21272/jnep.9(1).01006
  20. Waste containing nanomaterials. Organisation for Economic Co-operation and Development. Available at: http://www.oecd.org/environment/waste/nanowaste.htm
  21. Suchikova, Y. A. (2015). Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide. Journal of Nano- and Electronic Physics, 7 (3), 03017-1–03017-3.
  22. Al-Saleh, M. H., Gelves, G. A., Sundararaj, U. (2013). Carbon nanofiber/polyethylene nanocomposite: Processing behavior, microstructure and electrical properties. Materials & Design (1980–2015), 52, 128–133. doi: 10.1016/j.matdes.2013.05.038
  23. Sahoo, N. G., Rana, S., Cho, J. W., Li, L., Chan, S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 35 (7), 837–867. doi: 10.1016/j.progpolymsci.2010.03.002
  24. Stojanović, D. B., Brajović, L., Orlović, A., Dramlić, D., Radmilović, V., Uskoković, P. S., Aleksić, R. (2013). Transparent PMMA/silica nanocomposites containing silica nanoparticles coating under supercritical conditions. Progress in Organic Coatings, 76 (4), 626–631. doi: 10.1016/j.porgcoat.2012.12.002
  25. Perkgoz, N. K., Toru, R. S., Unal, E., Sefunc, M. A., Tek, S., Mutlugun, E. et. al. (2011). Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Applied Catalysis B: Environmental, 105 (1-2), 77–85. doi: 10.1016/j.apcatb.2011.03.037
  26. Singh, D., Sotiriou, G. A., Zhang, F., Mead, J., Bello, D., Wohlleben, W., Demokritou, P. (2016). End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environmental Science: Nano, 3 (6), 1293–1305. doi: 10.1039/c6en00252h
  27. Shaimova, A. M., Nasyrova, L. A., Faskhutdinov, R. R. (2011). Izuchenie faktorov metangeneratsii v usloviyah poligona tverdyh bytovyh othodov. Bashkirskiy himicheskiy zhurnal, 11 (2), 172–176. Available at: http://cyberleninka.ru/article/n/izuchenie-faktorov-metangeneratsii-v-usloviyah-poligona-tverdyh-bytovyh-othodov
  28. Osipova, T. A., Remez, N. S. (2015). Prognozirovanie vyhoda biogaza i temeratury poligona tverdyh bytovyh othodov na osnove matematicheskogo modelirovaniya. Visnyk KrNU im. Mykhaila Ostrohradskoho, 3 (1), 144–149.
  29. Beaudrie, C. (2010). Emerging nanotechnologies and life-cycleregulation: an investigation of federal regulatory oversightfrom nanomaterial production to end of life. Chemical Heritage Foundation. Available at: http://www.chemheritage.org/
  30. Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Preparation of nanoporous n-InP (100) layers by electrochemical etching in HCI solution. Functional Materials, 17 (1), 131–134.
  31. Lazarenko, A. S. (2011). Model of Formation of Nano-Sized Whiskers Out of Channels of the Triple Junctions of Grain Boundaries of Polycrystal. Journal of Nano- and Electronic Physics, 3 (4), 59–64.
  32. Seager, T. P., Linkov, I. (2008). Coupling Multicriteria Decision Analysis and Life Cycle Assessment for Nanomaterials. Journal of Industrial Ecology, 12 (3), 282–285. doi: 10.1111/j.1530-9290.2008.00048.x
  33. Suchikova, Y., Kidalov, V., Sukach, G. (2010). Blue shift of photoluminescence spectrum of porous InP. ECS Transactions, 25 (24), 59–64. doi: 10.1149/1.3316113
  34. Rajendran, V. (2009). Development of Nanomaterials from Natural Resources for Various Industrial Applications. Advanced Materials Research, 67, 71–76. doi: 10.4028/www.scientific.net/amr.67.71
  35. Vambol, S., Vambol, V., Sychikova, Y., Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: 10.15587/1729-4061.2017.85847
  36. Jones, R. (2007). Are natural resources a curse? Nature Nanotechnology, 2 (11), 665–666. doi: 10.1038/nnano.2007.351
  37. Efros, A. L., Nesbitt, D. J. (2016). Origin and control of blinking in quantum dots. Nature Nanotechnology, 11 (8), 661–671. doi: 10.1038/nnano.2016.140
  38. Kosandrovich, E. G., Soldatov, V. S. (2012). Fibrous ion exchangers. Ion Exchange Technology I. Springer, 299–371. doi: 10.1007/978-94-007-1700-8_9
  39. Vatutsina, O. M., Soldatov, V. S., Sokolova, V. I., Johann, J., Bissen, M., Weissenbacher, A. (2007). A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. Reactive and Functional Polymers, 67 (3), 184–201. doi: 10.1016/j.reactfunctpolym.2006.10.009
  40. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16 (10), 2346–2353. doi: 10.1088/0957-4484/16/10/059
  41. Wang, L., Chen, H., Li, L., Xia, T., Dong, L., Wang, L. (2004). Quantitative determination of proteins at nanogram levels by the resonance light-scattering technique with macromolecules nanoparticles of PS–AA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (4), 747–750. doi: 10.1016/s1386-1425(03)00285-3
  42. Suchikova, Y. O. (2017). Preparation of Block Nanostructures on the Surface of Indium Phosphide. Journal of Nano- and Electronic Physics, 9 (3), 03005–1–03005–5. doi: 10.21272/jnep.9(3).03005
  43. Chernohor, L. F., Rashkevych, O. S. (2013). Automatic laser systems operational control of the concentration of pollutants in the atmosphere. Eastern-European Journal of Enterprise Technologies, 2 (10 (62)), 39–42. Available at: http://journals.uran.ua/eejet/article/view/12752/10625
  44. Vasiliev, B., Mannun, U. (2006). Infruchervony lidar differential absorption for environmental monitoring of the environment. Quantum Electronics, 9 (36), 801–820.
  45. Meyer, P. L., Sigrist, M. W. (1990). Atmospheric pollution monitoring using CO2‐laser photoacoustic spectroscopy and other techniques. Review of Scientific Instruments, 61 (7), 1779–1807. doi: 10.1063/1.1141097
  46. Ivlev, L., Andreev, S. (1986). Optical properties of aerosols. Lugansk: Lugansk State University, 278.
  47. Isimaru, A. (1981). Propagation and scattering of waves in randomly inhomogeneous media. Vol. 1. Single scattering and transport theory. Moscow: Mir, 281.

Downloads

Published

2017-12-12

How to Cite

Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., & Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6(10 (90), 57–64. https://doi.org/10.15587/1729-4061.2017.118213