Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere
DOI:
https://doi.org/10.15587/1729-4061.2017.118213Keywords:
waste nanomaterials, thermo-oxidative decomposition of polymer, atmospheric air, identification of toxic substancesAbstract
We studied the processes of thermo-oxidative decomposition of polymer synthetic waste material with nanoparticles on the example of one of widely spread polymers – synthetic nitron fiber.
We carried out a study on the migration of decomposition products and nanoparticles into the environment on a simulation model. We heated the nitronic fibrous material in the temperature range of 150...300 ºС in the presence of oxygen. We stretched the material under investigation until the appearance of fiber breaks. The time of the experiment varied from three to thirty minutes. The REM image of nitron nanofibres obtained by heating the material to 200 °C for 25 minutes demonstrates that fibers are densely packed nanothreads of different length with diameters from 50 to 150 nm. This indicates instability and fragility of the material obtained and the possibility of manifestation of quantum-dimensional effects.
We experimentally established gaseous substances, which were released during thermo-oxidative decomposition of polymers, and their concentration, depending on the process temperature on the example of a nitron. Thus, we can consider ammonia and hydrogen cyanide as substances-indicators of latent processes of combustion (smoldering) of materials in a body of a landfill. We need to have a high-precision method of gas analysis to prevent the development of an emergency, since the release of substances occurs already at 100 °C, but in low concentrations. We proposed a remote identification method with a use of a laser complex.References
- Golinko, V. I., Luts, I. O., Yavorskaya, Ye. A. (2012). Reserch of air and dust balance in inclined shaft of the mine No. 9-10 at Marganetskiy Dressing Plant. Scientific Bulletin of National Mining University, 3, 98–101.
- Voitiuk, Y. Y., Kuraieva, I. V., Kroik, A. A., Pavlychenko, A. V. (2014). Ecological and geochemical assessment of the soil contamination levels in the areas of metallurgical enterprises operation. Scientific Bulletin of National Mining University, 4, 45–51.
- Vambol', V. V., Kostyuk, V. E., Kirilash, E. I. (2015). Mathematical description of the cooling process of generating gas during a waste disposal. Technology audit and production reserves, 2 (4 (22)), 23–29. doi: 10.15587/2312-8372.2015.40467
- Jadhao, S. B., Shingade, S. G., Pandit, A. B., Bakshi, B. R. (2017). Bury, burn, or gasify: assessing municipal solid waste management options in Indian megacities by exergy analysis. Clean Technologies and Environmental Policy, 19 (5), 1403–1412. doi: 10.1007/s10098-017-1338-9
- Vambol', V. V. (2015). Modelirovanie gazodinamicheskih protsessov ohlazhdeniya generatornogo gaza v ustanovke dlya utilizatsii othodov. Tekhnologii tekhnosfernoy bezopasnosti: nnternet-zhurnal, 1 (59). Available at: http://agps-2006.narod.ru/ttb/2015-1/17-01-15.ttb.pdf
- Vambol, V. (2016). Numerical integration of the process of cooling gas formed by thermal recycling of waste. Eastern-European Journal of Enterprise Technologies, 6 (8 (84)), 48–53. doi: 10.15587/1729-4061.2016.85455
- Janajreh, I., Raza, S. S., Valmundsson, A. S. (2013). Plasma gasification process: Modeling, simulation and comparison with conventional air gasification. Energy Conversion and Management, 65, 801–809. doi: 10.1016/j.enconman.2012.03.010
- Mozafari, A., Farshchi Tabrizi, F., Farsi, M., Seyed Mousavi, S. A. H. (2017). Thermodynamic modeling and optimization of thermolysis and air gasification of waste tire. Journal of Analytical and Applied Pyrolysis, 126, 415–422. doi: 10.1016/j.jaap.2017.04.001
- Vambol, S., Shakhov, Y., Vambol, V., Petukhov, I. (2016). A mathematical description of the separation of gas mixtures generated by the thermal utilization of waste. EasternEuropean Journal of Enterprise Technologies, 1 (2 (79)), 35–41. doi: 10.15587/1729-4061.2016.60486
- Vambol', S. A., Shahov, Yu. V., Vambol', V. V., Petuhov, I. I. (2016). Mathematical description of processes in separation unit for gas mixtures during disposal of waste. Technology audit and production reserves, 3 (3 (29)), 62–67. doi: 10.15587/2312-8372.2016.70688
- Vambol', V. V., Rashkevich, A. S., Rashkevich, N. V. (2016). Analiz osobennostey ekologicheskogo monitoringa atmosfernogo vozduha v zone chrezvychaynyh situatsiy tekhnogennogo haraktera. Visnyk NTU «KhPI», 49 (1221), 85–88. Available at: http://repositsc.nuczu.edu.ua/bitstream/123456789/1591/1/85-89.pdf
- Rashkevich, N. V. (2017). Issledovanie sostava produktov goreniya sinteticheskogo volokna. East journal of security studies, 1, 194–201.
- Yamaguchi, S. (2015). Incineration of waste containing nanomaterial. Environment Policy Committee, 14.
- Finansirovanie i rynok (2011). PersT. Available at: http://perst.issp.ras.ru/Control/Inform/perst/2011/11_11_12/index.htm
- Watson-Wright, C., Singh, D., Demokritou, P. (2017). Toxicological implications of released particulate matter during thermal decomposition of nano-enabled thermoplastics. NanoImpact, 5, 29–40. doi: 10.1016/j.impact.2016.12.003
- Popovich, V., Kucheryaviy, V. (2012). Fire hazard of spontaneous landfills and solid waste landfills. Fire safety, 21, 140–147.
- Shcherbina, N., Akimova, А., Biryukov, V. et. al. (2008). Structural changes in the modified copolymer of polyacrylonitrile. Chemical fibers, 6, 14–16.
- Bychkova, E., Shcherbina, N., Panova, L. (2015). Modified polyacrylonitrile fiber. The young scientist, 24.1, 13–15.
- Suchikova, Y. O. (2017). Sulfide Passivation of Indium Phosphide Porous Surfaces. Journal of Nano- and Electronic Physics, 9 (1), 01006-1–01006-4. doi: 10.21272/jnep.9(1).01006
- Waste containing nanomaterials. Organisation for Economic Co-operation and Development. Available at: http://www.oecd.org/environment/waste/nanowaste.htm
- Suchikova, Y. A. (2015). Synthesis of indium nitride epitaxial layers on a substrate of porous indium phosphide. Journal of Nano- and Electronic Physics, 7 (3), 03017-1–03017-3.
- Al-Saleh, M. H., Gelves, G. A., Sundararaj, U. (2013). Carbon nanofiber/polyethylene nanocomposite: Processing behavior, microstructure and electrical properties. Materials & Design (1980–2015), 52, 128–133. doi: 10.1016/j.matdes.2013.05.038
- Sahoo, N. G., Rana, S., Cho, J. W., Li, L., Chan, S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 35 (7), 837–867. doi: 10.1016/j.progpolymsci.2010.03.002
- Stojanović, D. B., Brajović, L., Orlović, A., Dramlić, D., Radmilović, V., Uskoković, P. S., Aleksić, R. (2013). Transparent PMMA/silica nanocomposites containing silica nanoparticles coating under supercritical conditions. Progress in Organic Coatings, 76 (4), 626–631. doi: 10.1016/j.porgcoat.2012.12.002
- Perkgoz, N. K., Toru, R. S., Unal, E., Sefunc, M. A., Tek, S., Mutlugun, E. et. al. (2011). Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Applied Catalysis B: Environmental, 105 (1-2), 77–85. doi: 10.1016/j.apcatb.2011.03.037
- Singh, D., Sotiriou, G. A., Zhang, F., Mead, J., Bello, D., Wohlleben, W., Demokritou, P. (2016). End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environmental Science: Nano, 3 (6), 1293–1305. doi: 10.1039/c6en00252h
- Shaimova, A. M., Nasyrova, L. A., Faskhutdinov, R. R. (2011). Izuchenie faktorov metangeneratsii v usloviyah poligona tverdyh bytovyh othodov. Bashkirskiy himicheskiy zhurnal, 11 (2), 172–176. Available at: http://cyberleninka.ru/article/n/izuchenie-faktorov-metangeneratsii-v-usloviyah-poligona-tverdyh-bytovyh-othodov
- Osipova, T. A., Remez, N. S. (2015). Prognozirovanie vyhoda biogaza i temeratury poligona tverdyh bytovyh othodov na osnove matematicheskogo modelirovaniya. Visnyk KrNU im. Mykhaila Ostrohradskoho, 3 (1), 144–149.
- Beaudrie, C. (2010). Emerging nanotechnologies and life-cycleregulation: an investigation of federal regulatory oversightfrom nanomaterial production to end of life. Chemical Heritage Foundation. Available at: http://www.chemheritage.org/
- Suchikova, Y. A., Kidalov, V. V., Sukach, G. A. (2010). Preparation of nanoporous n-InP (100) layers by electrochemical etching in HCI solution. Functional Materials, 17 (1), 131–134.
- Lazarenko, A. S. (2011). Model of Formation of Nano-Sized Whiskers Out of Channels of the Triple Junctions of Grain Boundaries of Polycrystal. Journal of Nano- and Electronic Physics, 3 (4), 59–64.
- Seager, T. P., Linkov, I. (2008). Coupling Multicriteria Decision Analysis and Life Cycle Assessment for Nanomaterials. Journal of Industrial Ecology, 12 (3), 282–285. doi: 10.1111/j.1530-9290.2008.00048.x
- Suchikova, Y., Kidalov, V., Sukach, G. (2010). Blue shift of photoluminescence spectrum of porous InP. ECS Transactions, 25 (24), 59–64. doi: 10.1149/1.3316113
- Rajendran, V. (2009). Development of Nanomaterials from Natural Resources for Various Industrial Applications. Advanced Materials Research, 67, 71–76. doi: 10.4028/www.scientific.net/amr.67.71
- Vambol, S., Vambol, V., Sychikova, Y., Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: 10.15587/1729-4061.2017.85847
- Jones, R. (2007). Are natural resources a curse? Nature Nanotechnology, 2 (11), 665–666. doi: 10.1038/nnano.2007.351
- Efros, A. L., Nesbitt, D. J. (2016). Origin and control of blinking in quantum dots. Nature Nanotechnology, 11 (8), 661–671. doi: 10.1038/nnano.2016.140
- Kosandrovich, E. G., Soldatov, V. S. (2012). Fibrous ion exchangers. Ion Exchange Technology I. Springer, 299–371. doi: 10.1007/978-94-007-1700-8_9
- Vatutsina, O. M., Soldatov, V. S., Sokolova, V. I., Johann, J., Bissen, M., Weissenbacher, A. (2007). A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. Reactive and Functional Polymers, 67 (3), 184–201. doi: 10.1016/j.reactfunctpolym.2006.10.009
- Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16 (10), 2346–2353. doi: 10.1088/0957-4484/16/10/059
- Wang, L., Chen, H., Li, L., Xia, T., Dong, L., Wang, L. (2004). Quantitative determination of proteins at nanogram levels by the resonance light-scattering technique with macromolecules nanoparticles of PS–AA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (4), 747–750. doi: 10.1016/s1386-1425(03)00285-3
- Suchikova, Y. O. (2017). Preparation of Block Nanostructures on the Surface of Indium Phosphide. Journal of Nano- and Electronic Physics, 9 (3), 03005–1–03005–5. doi: 10.21272/jnep.9(3).03005
- Chernohor, L. F., Rashkevych, O. S. (2013). Automatic laser systems operational control of the concentration of pollutants in the atmosphere. Eastern-European Journal of Enterprise Technologies, 2 (10 (62)), 39–42. Available at: http://journals.uran.ua/eejet/article/view/12752/10625
- Vasiliev, B., Mannun, U. (2006). Infruchervony lidar differential absorption for environmental monitoring of the environment. Quantum Electronics, 9 (36), 801–820.
- Meyer, P. L., Sigrist, M. W. (1990). Atmospheric pollution monitoring using CO2‐laser photoacoustic spectroscopy and other techniques. Review of Scientific Instruments, 61 (7), 1779–1807. doi: 10.1063/1.1141097
- Ivlev, L., Andreev, S. (1986). Optical properties of aerosols. Lugansk: Lugansk State University, 278.
- Isimaru, A. (1981). Propagation and scattering of waves in randomly inhomogeneous media. Vol. 1. Single scattering and transport theory. Moscow: Mir, 281.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Sergij Vambol, Viola Vambol, Igor Bogdanov, Yana Suchikova, Nina Rashkevich
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.