Determining energy-efficient operation modes of the propulsion electrical motor of an autonomous swimming apparatus

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.118984

Keywords:

autonomous swimming apparatus, control algorithms, power losses, baro-unloaded propulsion asynchronous electrical motor

Abstract

Ensuring the maximum possible navigation range and duration of autonomous functioning of an unmanned swimming apparatus for special purposes was solved by minimizing energy consumption of the electromotive system. In order to achieve it, we proposed a procedure for the estimation of power losses at different static loads and power voltage of the asynchronous baro-unloaded motor of an autonomous swimming device. Special features of the procedure include determining an essentially descending character, loading characteristics of a baro-unloaded asynchronous motor of low capacity; determining the values for magnetic flux of the induction motor, at which under steady operational modes and a partial load, the total power losses are minimal; establishing dependences of performance efficiency and the stator current when controlling voltage at different loads.

Employing the proposed procedure in the control algorithm over electromotive system of the device made it possible to enable an energy-efficient change in power voltage at a constant frequency and partial loads

Author Biographies

Yana Volyanskaya, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolayiv, Ukraine, 54025

PhD, Associate Professor

Department of electrical equipment of courts and informative safety

Sergey Volyanskiy, Admiral Makarov National University of Shipbuilding Heroiv Ukrainy ave., 9, Mykolayiv, Ukraine, 54025

PhD

Department of electrical equipment of courts and informative safety 

Aleksandr Volkov, National University «Odessa Maritime Academy» Didrihsona str., 8, Odessa, Ukraine, 65029

PhD

Department of navigation

Oleg Onishchenko, National University «Odessa Maritime Academy» Didrihsona str., 8, Odessa, Ukraine, 65029

Doctor of Technical Sciences

Department of technical operation of the fleet

References

  1. Podvodnye ubiytsy avianostsev: glubinnye bespilotniki protiv VMS SShA. Available at: https://tvzvezda.ru/news/forces/content/201504271716-4r23.htm
  2. Budashko, V. V. (2017). Design of the three-level multicriterial strategy of hybrid marine power plant control for a combined propulsion complex. Electrical Engineering & Electromechanics, 2, 62–72. doi: 10.20998/2074-272x.2017.2.10
  3. Volyanskaya, Ya. B., Volyanskiy, S. M. (2012). Razrabotka asinhronnogo dvigatelya dlya dvizhitel'no-rulevogo kompleksa podvodnogo apparata. Problemy avtomatiki i elektrooborudovaniya transportnyh sredstv «PAETS-2012»: Mater. Vseukr. nauch. tekhn. konf. Nikolaev: NUK, 129–131.
  4. Ogay, S. A. (2015). Ponyatiya mnogotselevogo sudna ledovogo plavaniya i osobennosti primeneniya sistemnogo podhoda pri opredelenii harakteristik na nachal'nom etape proektirovaniya sudna etogo tipa. Morskie intellektual'nye tekhnologii, 1 (3 (29)), 45–54.
  5. Lepistö, V., Lappalainen, J., Sillanpää, K., Ahtila, P. (2016). Dynamic process simulation promotes energy efficient ship design. Ocean Engineering, 111, 43–55. doi: 10.1016/j.oceaneng.2015.10.043
  6. Buhanovskiy, A. V., Nechaev, Yu. I. (2012). Metaontologiya issledovatel'skogo proektirovaniya morskih dinamicheskih ob'ektov. Ontologiya proektirovaniya, 1, 53–64.
  7. Heinen, S. (2012). Analyzing Energy Use with Decomposition Methods. IEA Energy Training Week, 769–778.
  8. Braslavskiy, I. Ya., Ishmatov, Z. Sh., Polyakov, V. N. (2004). Energosberegayushchiy asinhronnyy elektroprivod. Moscow: Izd. tsentr «Akademiya», 256.
  9. Chan, C. C. (2002). The state of the art of electric and hybrid vehicles. Proceedings of the IEEE, 90 (2), 247–275. doi: 10.1109/5.989873
  10. Emadi, A., Lee, Y. J., Rajashekara, K. (2008). Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles. IEEE Transactions on Industrial Electronics, 55 (6), 2237–2245. doi: 10.1109/tie.2008.922768
  11. Onishchenko, O. A. (2006). Elektroprivod sistem kondensatsii holodil'nyh ustanovok. Elektromashinostroenie i elektrooborudovanie, 66, 190–192.
  12. Zeraoulia, M., Benbouzid, M. E. H., Diallo, D. (2006). Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study. IEEE Transactions on Vehicular Technology, 55 (6), 1756–1764. doi: 10.1109/tvt.2006.878719
  13. Lian, J., Zhou, Y., Ma, T., Wang, W. (2010). Design for Motor Controller in Hybrid Electric Vehicle Based on Vector Frequency Conversion Technology. Mathematical Problems in Engineering, 2010, 1–21. doi: 10.1155/2010/627836
  14. Dong, G., Ojo, O. (2006). Efficiency Optimizing Control of Induction Motor Using Natural Variables. IEEE Transactions on Industrial Electronics, 53 (6), 1791–1798. doi: 10.1109/tie.2006.885117
  15. Volyanskaya, Ya. B., Andryushchenko, O. A., Boyko, A. A. (2006). Formirovanie vyhodnogo napryazheniya TPN, invariantnogo faze toka nagruzki. Elektromashynobuduvannia ta elektroobladnannia, 66, 33–35.
  16. Vittek, J., Ryvkin, S. (2013). Decomposed Sliding Mode Control of the Drive with Interior Permanent Magnet Synchronous Motor and Flexible Coupling. Mathematical Problems in Engineering, 2013, 1–17. doi: 10.1155/2013/680376
  17. Gomáriz, S., Prat, J., Sole, J., Gayà, P. (2009). An autonomous vehicle development for submarine observation. Journal of Marine Research, 2, 23–35.
  18. Ghozzi, S., Jelassi, K., Roboam, X. (2004). Energy optimization of induction motor drives. 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT ’04. doi: 10.1109/icit.2004.1490143
  19. Raj, C. T., Srivastava, S. P., Agarwal, P. (2009). Energy Efficient Control of Three-Phase Induction Motor – A Review. International Journal of Computer and Electrical Engineering, 61–70. doi: 10.7763/ijcee.2009.v1.10
  20. Marchenko, A. A., Trudnev, S. Yu. (2016). Eksperimental'nye issledovaniya protsessa iskusstvennogo nagruzheniya sudovyh asinhronnyh elektrodvigateley. Vestnik Kamchatskogo GTU, 38, 16–22.
  21. Marchenko, A. A., Onishchenko, O. A., Trudnev, S. Yu. (2014). Issledovanie modeli asinhronnogo elektrodvigatelya na vozmozhnost' nagruzheniya pri pomoshchi ponizheniya chastoty pitayushchego napryazheniya. Vestnik Kamchatskogo GTU, 29, 17–24.

Downloads

Published

2017-12-25

How to Cite

Volyanskaya, Y., Volyanskiy, S., Volkov, A., & Onishchenko, O. (2017). Determining energy-efficient operation modes of the propulsion electrical motor of an autonomous swimming apparatus. Eastern-European Journal of Enterprise Technologies, 6(8 (90), 11–16. https://doi.org/10.15587/1729-4061.2017.118984

Issue

Section

Energy-saving technologies and equipment