Development of the system for prediction of security state of an enterprise using semantic–frame fuzzy models of knowledge base

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.119100

Keywords:

semantics, frame, knowledge models, knowledge base, output machine, regressive dynamic models, prediction, security, potential, expert knowledge, taxonomy

Abstract

The system based on results of prediction of technical and technological potential was proposed; it provided clear current values of indicators of the enterprise’s operation, properties and permissible restrictions of these properties. It was proved that the proposed system has a special purpose and consists of units of classes of indicators and the base of the facts of individual instances of classes, and can be used for the implementation of prediction problems in any industry.

As a result of modeling, it was found that introduction of the prediction unit into a system allows us more accurately and objectively to consider and evaluate a whole range of indicators of the enterprise’s operation. The proposed prediction system calculated approximated prospective value of the indicator of the state of technical and technological potential of an enterprise in time, which greatly affects probability of bankruptcy of an enterprise. It is appropriate to use the prediction system for complex processes with fuzzy logic, when there is no simple mathematical model and expert knowledge can be formulated without fuzzy logic only in linguistic form. This proves that the proposed system can be used for prediction of all other potential of an enterprise that also influence probability of bankruptcy of an enterprise.

Author Biographies

Olga Chubukova, Kyiv National University of Technologies and Design Nemirovuch-Danchenko ave., 1, Kyiv, Ukraine, 01011

Doctor of Economic Sciences, Professor, Head of Department

Department of cybernetics and marketing

Hennadii Ivanchenko, Kyiv National Economic university named after Vadym Hetman Peremohy ave., 54/1, Kyiv, Ukraine, 03057

PhD, Associate Professor

Department of Economics Information Systems

Nadii Ivanchenko, National Aviation University Kosmonavta Komarova ave., 1, Kyiv, Ukraine, 03058

PhD, Associate Professor

Department of cybernetics 

References

  1. Arefieva, O. V. (2015). Finansova bezpeka pidpryiemstva: metodychni osoblyvosti zabezpechennia. Naukovyi visnyk NLTU Ukrainy, 25.3, 187–192.
  2. Analitychna informatsiya kompleksnoi systemy informatsiyno-pravovoho zabezpechennia. Liha: Zakon. Available at: http://products.ligazakon.ua/systems/enterprises
  3. Pro vidnovlennia platospromozhnosti borzhnyka abo vyznannia yoho bankrutom (2011). Verkhovna Rada Ukrainy, No. 4212-VI. Available at: http://zakon4.rada.gov.ua/laws/show/4212-17
  4. Ivanchenko, N. O. (2012). Semantychne modeliuvannia tekhniko-tekhnolohichnoi funktsionalnoi skladovoi ekonomichnoi bezpeky pidpryiemstva. Aktualni problemy ekonomiky, 127, 276–282.
  5. Shtanhret, A. M., Ya. V. Kotliarevskyi, O. V. Melnykov (2013). Finansova bezpeka pidpryiemstva: metodychni zasady upravlinnia. Finansy Ukrainy, 11, 56–65.
  6. Tereshchenko, O. O. (2004). Dyskryminantna model intehralnoi otsinky finansovoho stanu pidpryiemstva. Ekonomika Ukrainy, 5, 38–44.
  7. Chubukova, O. Yu., Voronkova, T. Ye. (2014). Systema ekonomichnoi bezpeky (ekosesteit): sutnist, struktura. Efektyvna ekonomika, 2.
  8. Dubas, O. P. (2004). Informatsiynyi rozvytok suchasnoi Ukrainy u svitovomu konteksti. Kyiv: Vyd-vo "Geneza", 208.
  9. Zghurovskyi, M. Z., Yakymenko, Yu. I., Tymofieiev, V. I. (2002). Informatsiini merezhevi tekhnolohiy v nautsi i osviti. Systemni doslidzhennia ta informatsiyni tekhnolohiy, 3, 43–56.
  10. Dey, L., Abulaish, M. (2008). Fuzzy ontologies for handling uncertainties and inconsistencies in domain knowledge description. 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence). doi: 10.1109/fuzzy.2008.4630550
  11. Zhai, J., Li, M., Zhou, K. (2010). Linguistic Variable Ontology and Its Application to Fuzzy Semantic Retrieval. Information Computing and Applications, 188–195. doi: 10.1007/978-3-642-16339-5_25
  12. Popova, Yu. B., Burakovskiy, A. I. Matematicheskie modeli pol'zovateley v adaptivnyh obuchayushchih sistemah. Konferentsiya MIDO. Available at: http://www.bntu.by/news/67-conference-mido/1545-2014-11-22-12-18-35.html]
  13. Klebanova, T. S., Rudachenko, O. O. (2015). Prohnozuvannia pokaznykiv finansovoi diialnosti pidpryiemstva zhytlovo-komunalnoho hospodarstva za dopomohoiu adaptyvnykh modelei. Biznes Inform, 1, 143–148.
  14. Khotomlianskyi, O., Chernata, T., Severyna, H. (2003). Kompleksna otsinka finansovoho stanu pidpryiemstva na osnovi vykorystannia matrychnykh modelei. Ekonomika Ukrainy, 3, 35–39.
  15. Arranz, N., Arroyabe, J. (2009). Technological cooperation: a new type of relations in the Progress of national innovation systems. The Innovation Journal: The Public Sector Innovation Journal, 14 (2), 1–11.
  16. Smith, K., Estibals, A. (2011). Innovation and Research Strategy for Growth. BIS Economics Paper, 15, 1–162.
  17. Dudatiev, A. V., Baryshev, Yu. V. (2007). Pat. No. 29269 UA. Systema optymizatsiy kompleksnoi bezpeky obiekta. MPK G 05 V 13/00. No. u200709463; declareted: 20.08.2007; published: 10.01.2008, Bul. No. 1/2008.
  18. Ivanchenko, N. O. (2014). MIVAR technologies modeling of technical – technological potential of enterprise. Aktualni problemy ekonomiky, 151, 505–511.
  19. Ivanchenko, H. F., Dalayin, B. O. A. (2015). Modeliuvannia freimovykh populiatsiy pidpryiemstv. Rozvytok novoi ekonomichnoi systemy na svitovomu, derzhavnomu ta rehionalnomu rivniakh: materialy Mizhnarodnoi naukovo-praktychnoi konferentsyi. Lviv: LEF, 122–124.
  20. Tho, Q. T., Hui, S. C., Fong, A. C. M., Cao, T. H. (2006). Automatic fuzzy ontology generation for semantic Web. IEEE Transactions on Knowledge and Data Engineering, 18 (6), 842–856. doi: 10.1109/tkde.2006.87
  21. Cai, Y., Leung, H. (2008). A Formal Model of Fuzzy Ontology with Property Hierarchy and Object Membership. Lecture Notes in Computer Science, 69–82. doi: 10.1007/978-3-540-87877-3_7
  22. Sanchez, E., Yamanoi, T. (2006). Fuzzy Ontologies for the Semantic Web. Lecture Notes in Computer Science, 691–699. doi: 10.1007/11766254_59
  23. Gorshkov, S. (2016). Vvedenie v ontologicheskoe modelirovanie reviziya 2.2. Ekaterinburg: OOO «TriniData», 165.
  24. Hordienko, I. V. (2008). Informatsiini systemy v menedzhmenti. Kyiv: KNEU, 544.
  25. Antoshkina, L. I. (2011). Systemni tekhnolohiy suspilstva znan. Donetsk: Yuho-Vostok, 486.
  26. Tho, Q. T., Hui, S. C., Fong, A. C. M., & Tru Hoang Cao. (2006). Automatic fuzzy ontology generation for semantic Web. IEEE Transactions on Knowledge and Data Engineering, 18(6), 842–856.

Downloads

Published

2017-12-25

How to Cite

Chubukova, O., Ivanchenko, H., & Ivanchenko, N. (2017). Development of the system for prediction of security state of an enterprise using semantic–frame fuzzy models of knowledge base. Eastern-European Journal of Enterprise Technologies, 6(3 (90), 58–65. https://doi.org/10.15587/1729-4061.2017.119100

Issue

Section

Control processes