Development of the method for dynamic regularization of selected estimates in the correlation matrices of observations

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.119264

Keywords:

static regularization, dynamic regularization, stability, convergence, consistency of estimates, correlation matrix

Abstract

The problem of formation of sample estimates of correlation matrices of observations by the «computational stability – consistency» criterion is considered. The problem of zero eigenvalues inherent in the problem of static regularization of sample estimates of correlation matrices is revealed. The solution of this problem by the static regularization method leads to the fact that the sample estimate of the regularized matrix is similar, but not identical to the original one in terms of consistency. Therefore, the problem of investigating the regularization of the sample estimate of the correlation matrix with respect to the solution of inverse problems under a priori uncertainty is actualized. In such a situation, the regularizing parameter of the inverse problem should be updated in real time as the input data arrive. To solve the revealed problem, an alternative method of dynamic regularization is proposed. In the study, the computational stability, convergence and consistency of sample estimates of correlation matrices of observations under a priori uncertainty are analyzed. The optimum function of dynamic regularization of sample estimates of correlation matrices of observations is obtained, the evaluation of which does not require prediction data and additional computing resources to search for the optimum value of the regularization parameter. The numerical results confirming the main findings are presented. The developed method of dynamic regularization of sample estimates of correlation matrices is an alternative to static regularization and allows resolving the «computational stability – consistency» contradiction when forming sample estimates of correlation matrices. Unlike static regularization, the procedure of dynamic regularization unambiguously connects the optimum dynamic regularization function with the matrix dimension and the size of the observed sample, which allows eliminating the problem of choosing the regularization parameter under a priori uncertainty with respect to the input data of the computational problem. In addition, the dynamic regularization method is characterized by simplicity of computational operations in real time in the absence of a priori information.

Application of the method of dynamic regularization of sample estimates of correlation matrices extends the capabilities of a wide class of information systems that are designed to solve ill-posed inverse problems under a priori uncertainty

Author Biographies

Valeriy Skachkov, Military Academy Fontanska doroha str., 10, Odessa, Ukraine, 65009

Doctor of Technical Sciences, Professor, Leading Researcher

Scientific Research Laboratory

Victor Chepkyi, Military Academy Fontanska doroha str., 10, Odessa, Ukraine, 65009

PhD, Associate Professor, Leading Researcher

Scientific Research Laboratory

Hennadii Bratchenko, Odessa State Academy of Technical Regulation and Quality Kovalska str., 15, Odessa, Ukraine, 65020

Doctor of Technical Sciences, Professor, Vice-rector for Research and International Relations

Helena Tkachuk, Military Academy Fontanska doroha str., 10, Odessa, Ukraine, 65009

Senior Lecturer

Department of fundamental sciences

Nadiia Kazakova, Odessa State Academy of Technical Regulation and Quality Kovalska str., 15, Odessa, Ukraine, 65020

Doctor of Technical Sciences, Associate Professor, Head of Department

Department of computer, information and measurement technologies

References

  1. Greshilov, A. A. (2009). Nekorrektnye zadachi tsifrovoy obrabotki informatsii i signalov. Moscow: Universitetskaya kniga, 360.
  2. Vasin, V. V., Ageev, A. L. (1993). Nekorrektnye zadachi s apriornoy informatsiey. Ekaterinburg: Nauka, 264.
  3. Terebizh, V. Yu. (2005). Vvedenie v statisticheskuyu teoriyu obratnyh zadach. Moscow: FIZMATLIT, 376.
  4. Balanis, C. A., Ioannides, P. I. (2007). Introduction to Smart Antennas. Synthesis Lectures on Antennas, 2 (1), 1–175. doi: 10.2200/s00079ed1v01y200612ant005
  5. Wirth, W.-D. (2013). Radar Techniques Using Array Antennas. London: The Institution of Engineering and Technology, 460. doi: 10.1049/pbra026e
  6. Lekhovitskiy, D. I., Atamanskiy, D. V., Rachkov, D. S., Semenyaka, A. V. (2015). Otsenka energeticheskih spektrov otrazheniy v impul'snyh doplerovskih meteoradiolokatorah. Ch. 1. Raznovidnosti algoritmov spektral'nogo otsenivaniya. Izvestiya vuzov. Radioelektronika, 58 (12), 3–30.
  7. Abramovich, Y. I., Spencer, N. K., Johnson, B. A. (2010). Band-Inverse TVAR Covariance Matrix Estimation for Adaptive Detection. IEEE Transactions on Aerospace and Electronic Systems, 46 (1), 375–396. doi: 10.1109/taes.2010.5417169
  8. El-Zooghby, A. (2005). Smart antenna engineering. Artech House, 330.
  9. Demmel, J. W. (1997). Applied Numerical Linear Algebra. University of California. Berkeley, California. doi: 10.1137/1.9781611971446
  10. Abramovich, Yu. P. (1981). Regulyarizovannyy metod adaptivnoy optimizatsii fil'trov po kriteriyu maksimuma otnosheniya signal/pomekha. Radiotekhnika i elektronika, 26 (3), 543–551.
  11. Cheremisin, O. P. (1982). Effektivnost' adaptivnogo algoritma s regulyarizatsiey vyborochnoy korrelyatsionnoy matritsy. Radiotekhnika i elektronika, 27 (10), 1933–1942.
  12. Goodman, N. R. (1963). Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribution (An Introduction). The Annals of Mathematical Statistics, 34 (1), 152–177. doi: 10.1214/aoms/1177704250
  13. Greshilov, A. A., Lebedev, A. L., Plohuta, P. A. (2008). Mnogosignal'naya pelengatsiya istochnikov radioizlucheniya na odnoy chastote kak nekorrektnaya zadacha. Uspekhi sovremennoy radioelektroniki, 42, 30–46.
  14. Liu, C.-S. (2012). Optimally scaled vector regularization method to solve ill-posed linear problems. Applied Mathematics and Computation, 218 (21), 10602–10616. doi: 10.1016/j.amc.2012.04.022
  15. Fuhry, M., Reichel, L. (2011). A new Tikhonov regularization method. Numerical Algorithms, 59 (3), 433–445. doi: 10.1007/s11075-011-9498-x
  16. Geman, D., Chengda Yang. (1995). Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing, 4 (7), 932–946. doi: 10.1109/83.392335
  17. Shou, G., Xia, L., Jiang, M., Wei, Q., Liu, F., Crozier, S. (2008). Truncated Total Least Squares: A New Regularization Method for the Solution of ECG Inverse Problems. IEEE Transactions on Biomedical Engineering, 55 (4), 1327–1335. doi: 10.1109/tbme.2007.912404
  18. Brezinski, C., Rodriguez, G., Seatzu, S. (2008). Error estimates for linear systems with applications to regularization. Numerical Algorithms, 49 (1-4), 85–104. doi: 10.1007/s11075-008-9163-1
  19. Cetin, M., Karl, W. C. (2001). Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Transactions on Image Processing, 10 (4), 623–631. doi: 10.1109/83.913596
  20. Voskoboynikov, Yu. E., Muhina, I. N. (1999). Regulyariziruyushchiy algoritm vosstanovleniya signalov i izobrazheniy s utochneniem lokal'nyh otnosheniy shum/signal. Avtometriya, 4, 71–83.
  21. Van Tris, G. (1972). Teoriya obnaruzheniya, otsenok i modulyatsii. Vol. 1. Teoriya obnaruzheniya, otsenok i lineynoy modulyatsii. Moscow: Sov. radio, 744.
  22. Repin, V. G., Tartakovskiy, G. P. (1977). Statisticheskiy sintez pri apriornoy neopredelennosti i adaptatsiya informatsionnyh sistem. Moscow: Sov. radio, 432.
  23. Voskoboynikov, Yu. E., Mitsel', A. A. (2015). Sovremennye problemy prikladnoy matematiki. Ch. 1. Lektsionniy kurs. Tomsk: Tomskiy gos. un-t sistem upravleniya i radioelektroniki (TUSUR), 136.
  24. Girko, V. L. (1988). Spektral'niy teoriya sluchaynyh matrits. Moscow: Nauka, 376.
  25. Tihonov, A. N., Goncharskiy, A. V., Stepanov, V. V. (1990). Chislennye metody resheniya nekorrektnyh zadach. Moscow: Nauka, 232.
  26. Osipov, Yu. S., Vasil'ev, F. P., Potapov, M. M. (1999). Osnovy metoda dinamicheskoy regulyarizatsii. Moscow: Izd-vo MGU, 236.

Downloads

Published

2017-12-25

How to Cite

Skachkov, V., Chepkyi, V., Bratchenko, H., Tkachuk, H., & Kazakova, N. (2017). Development of the method for dynamic regularization of selected estimates in the correlation matrices of observations. Eastern-European Journal of Enterprise Technologies, 6(4 (90), 11–18. https://doi.org/10.15587/1729-4061.2017.119264

Issue

Section

Mathematics and Cybernetics - applied aspects