Synthesis of robust controllers for the control systems of technological units at iron ore processing plants

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.119646

Keywords:

robust controller, automated control, ore enrichment, suboptimal controller, frequency characteristics

Abstract

In order to synthesize a robust system of control over technological units, an analysis of appropriate mathematical models was performed. The uncertainty of models of technological iron ore processing units was accounted for by connecting a diagonal block at the top using a fractional linear transformation.

To study robust control systems of technological units, we applied the following types of robust controllers: suboptimal H-controller, a controller that was synthesized using the method of circuit formation, and µ-controller. We performed an analysis of results of the study into indicators of robust quality and stability of control, created on the basis of these types of controllers.

The best results were obtained using μ-controller, which ensures a minimal overshoot value of 2 %. Reducing the order of the selected μ-controller to the fourth order was performed by approximation using the Hankel norm. Under such a condition, a root-mean-square error relative to the base controller is 0.027.

Results of present research could be used in the synthesis of control over technological iron ore processing units under conditions of uncertainty in parameters. 

Author Biographies

Vladimir Morkun, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Professor, Vice-Rector for Research

Natalia Morkun, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

Doctor of Technical Sciences, Associated Professor, Head of Department

Department of automation, computer science and technology

Vitaliy Tron, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Associate Professor

Department of automation, computer science and technology

Svitlana Hryshchenko, Kryvyi Rih National University Vitaliya Matusevycha str., 11, Kryvyi Rih, Ukraine, 50027

PhD, Head of department

Department of scientific and technical information

References

  1. Maryuta, A. N., Kachan, Yu. G., Bun'ko, V. A. (1983). Avtomaticheskoe upravlenie tekhnologicheskimi protsessami obogatitel'nyh fabrik. Moscow: Nedra, 277.
  2. Tumidajski, Т., Saramak, D., Foszcz, D., Niedoba, T. (2005). Methods of modeling and optimization of work effects for chosen mineral processing systems. Acta Montanistica Slovaca, 10 (1), 115–120.
  3. Nesterov, G. S. (1976). Tekhnologicheskaya optimizatsiya obogatitel'nyh fabrik. Moscow: Nedra, 120.
  4. Trop, A. E., Kozin, V. Z., Prokof'ev, E. V. (1986). Avtomaticheskoe upravlenie tekhnologicheskimi protsessami obogatitel'nyh fabrik. Moscow: Nedra, 303.
  5. Zhukova, N. V., Ponitkova, G. V. (2010). Sintez robastnogo regulyatora sistemy avtomaticheskogo soprovozhdeniya tseli po dal'nosti dlya radiolokatsionnoy stantsii. Naukovi pratsi Donetskoho natsionalnoho tekhnichnoho universytetu, 14, 5–10.
  6. Pupkov, K. A., Egupov, N. D. (Eds.) (2004). Metody klassicheskoy i sovremennoy teorii avtomaticheskogo upravleniya. Vol. 3. Sintez regulyatorov sistem avtomaticheskogo upravleniya. Moscow: MGTU im. N. E. Baumana, 616.
  7. Gu, D.-W., Petkov, P. H., Konstantinov, M. M. (2005). Robust Control Design with MATLAB. London: Springer-Verlag Limited, 403. doi: 10.1007/b135806
  8. Polyak, B. T., Shcherbakov, P. S. (2002). Robastnaya ustoychivost' i upravlenie. Moscow: Nauka, 303.
  9. Zhou, K., Doyle, J. C., Glover, K. (1995). Robust and Optimal Control. Prentice Hall, Upper Saddle River, NJ, 596.
  10. Gu, D.-W., Postlethwaite, I., Tsai, M.-C. (1992). H∞ Super-Optimal Solutions. Robust Control System Techniques and Applications, 183–246. doi: 10.1016/b978-0-12-012751-1.50011-2
  11. Glover, K., Doyle, J. C. (1988). State-space formulae for all stabilizing controllers that satisfy an H∞-norm bound and relations to relations to risk sensitivity. Systems & Control Letters, 11 (3), 167–172. doi: 10.1016/0167-6911(88)90055-2
  12. Yang, N., McCalley, J. D. (2000). μ-analysis and synthesis for the uncertainties in static load modeling. Electric Power Systems Research, 56 (1), 17–25. doi: 10.1016/s0378-7796(00)00079-1
  13. Morkun, V., Morkun, N., Tron, V. (2015). Formalization and frequency analysis of robust control of ore beneficiation technological processes under parametric. Metallurgical and Mining Industry, 5, 7–11.
  14. Golik, V., Komashchenko, V., Morkun, V., Burdzieva, O. (2015). Metal deposits combined development experience. Metallurgical and Mining Industry, 6, 591–594.
  15. Morkun, V., Morkun, N., Tron, V. (2015). Identification of control systems for ore-processing industry aggregates based on nonparametric kernel estimators. Metallurgical and Mining Industry, 1, 14–17.
  16. Kupin, A. (2007). Neural Identification of Technological Process of Iron Ore Beneficiation. 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. doi: 10.1109/idaacs.2007.4488409
  17. Kupin, A. (2014). Research of properties of conditionality of task to optimization of processes of concentrating technology is on the basis of application of neural networks. Metallurgical and Mining Industry, 4, 51–55.
  18. Morkun, V., Morkun, N., Tron, V. (2015). Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation. Metallurgical and Mining Industry, 10, 6–9.
  19. Morkun, V., Tron, V. (2014). Ore preparation multi-criteria energy-efficient automated control with considering the ecological and economic factors. Metallurgical and Mining Industry, 5, 4–7.
  20. Sinchuk, O., Kozakevich, I., Fedotov, V., Somochkyn, A., Serebrenikov, V. (2017). Development of a system to control the motion of electric transport under conditions of iron-ore mines. Eastern-European Journal of Enterprise Technologies, 3 (2 (87)), 39–47. doi: 10.15587/1729-4061.2017.103716
  21. Morkun, V., Morkun, N., Tron, V. (2015). Distributed control of ore beneficiation interrelated processes under parametric uncertainty. Metallurgical and Mining Industry, 8, 18–21.
  22. Morkun, V., Morkun, N., Tron, V. (2015). Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation. Metallurgical and Mining Industry, 7, 16–19.
  23. Morkun, V., Morkun, N., Pikilnyak, A. (2015). Adaptive control system of ore beneficiation process based on Kaczmarz projection algorithm. Metallurgical and Mining Industry, 2, 35–38.
  24. Sinchuk, O., Kozakevich, I., Yurchenko, N. (2017). Sensorless control of switched reluctance motors of traction electromechanical systems. Technical Electrodynamics, 5, 62–66.
  25. Coetzee, L. C., Craig, I. K., Kerrigan, E. C. (2010). Robust Nonlinear Model Predictive Control of a Run-of-Mine Ore Milling Circuit. IEEE Transactions on Control Systems Technology, 18 (1), 222–229. doi: 10.1109/tcst.2009.2014641
  26. Van Dijk, N. J. M., van de Wouw, N., Doppenberg, E. J. J., Oosterling, H. A. J., Nijmeijer, H. (2012). Robust Active Chatter Control in the High-Speed Milling Process. IEEE Transactions on Control Systems Technology, 20 (4), 901–917. doi: 10.1109/tcst.2011.2157160
  27. Rober, S. J., Shin, Y. C., Nwokah, O. D. I. (1997). A Digital Robust Controller for Cutting Force Control in the End Milling Process. Journal of Dynamic Systems, Measurement, and Control, 119 (2), 146. doi: 10.1115/1.2801226

Downloads

Published

2018-02-22

How to Cite

Morkun, V., Morkun, N., Tron, V., & Hryshchenko, S. (2018). Synthesis of robust controllers for the control systems of technological units at iron ore processing plants. Eastern-European Journal of Enterprise Technologies, 1(2 (91), 37–47. https://doi.org/10.15587/1729-4061.2018.119646