Development of the biotechnology for obtaining a dietary supplement from the selenium-containing probiotic cultures Lactobacillus acidophilus 412/307 and Bifidobacterium bifidum 1

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.120785

Keywords:

probiotics, dietary supplements, sodium selenite, bifidobacteria, lactobacilli, selenoproteins, optical density

Abstract

The relevance of creating a new dietary supplement based on the selenium-containing cultures of lacto- and bifidobacteria was proven. We have chosen the optimal source of selenium – sodium selenite (Na2SeO3), adding which to the cultivation medium of microorganisms ensures maximum accumulation of organic forms of selenium in the examined microorganisms.

We have established the effect of concentrations of sodium selenite on an increase in the biomass of lacto- and bifidobacteria. Concentrations of Na2SeO3 exceeding 8 µg/cm3 cause the inhibition of growth in the lactobacilli biomass when compared with control. The growth of biomass of bifidobacteria is inhibited under the influence of the concentration of Na2SeO3 above 5 µg/cm3. Applying the indicators of optical density, we determined values for a specific growth rate and the duration of generation of biomass of the examined microorganisms. The dynamics of selenium accumulation by the cultures Lactobacillus acidophilus 412/307 and Bifidobacterium bifidum I was studied. A direct dependence was established between the quantitative content of inorganic selenium in the environment of cultivation and the content of organic selenium in bacterial cells. Adding the concentration of sodium selenite equal to 0.5 µg/cm3 provides for obtaining 105 µg of organic selenium per one gram of dry biomass of lactobacilli; this indicator for bifidobacteria is 97.5 µg/g. At a concentration of Na2SeO3 equal to 20 µg/cm3, 4,698 µg of organic selenium is biotransformed in the biomass of lactobacilli and 3,149 µg –in the biomass of bifidobacteria.

Based on the data derived, we have developed a technological scheme for obtaining the dietary supplement with the quantitative content of organic selenium at 202.5±1 µg/g. The content of lactobacilli was 1.0×109 CFU/cm3; that of bifidobacteria – 1.2×108 CFU/cm3

Author Biographies

Natalia Zykova, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Postgraduate student

Department of Biochemistry, Microbiology and Physiology of Nutrition

Leonid Kaprellyanz, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor, Head of Department

Department of Biochemistry, Microbiology and Physiology of Nutrition

Arsen Petrosyants, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Biochemistry, Microbiology and Physiology of Nutrition

Alexander Zykov, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD

Department of processes, equipment, energy management

References

  1. Kapreliants, L. V., Yorhachova, K. I. (2003). Funktsionalni produkty. Odessa: Druk, 312.
  2. Spirichev, V. B. (2003). Obogashchenie pishchevyh produktov mikronutrientami: nauchnye podhody i prakticheskie resheniya. Pishchevaya promyshlennost', 3, 10–16.
  3. Kapreliants, L. V., Trehub, N. S. (2016). Kultyvuvannia bifido- i laktobakteriyi na seredovyshchakh iz selenitom natriyu. Kharchova nauka i tekhnolohiya, 10, 26–30.
  4. Reilly, C. (1998). Selenium: A new entrant into the functional food arena. Trends in Food Science & Technology, 9 (3), 114–118. doi: 10.1016/s0924-2244(98)00027-2
  5. Breton, J., Daniel, C., Dewulf, J., Pothion, S., Froux, N., Sauty, M. et. al. (2013). Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicology Letters, 222 (2), 132–138. doi: 10.1016/j.toxlet.2013.07.021
  6. Goderska, K., Nowak, J., Czarnecki, Z. (2008). Comparison of Lactobacillus acidophilus and Bifidobacterium bifidum species in media supplemented with selected saccharides including prebiotics. Technologia Alimentaria, 7 (2), 5–20.
  7. Rajashree, K., Muthukumar, T. (2013). Selection of culture medium and conditions for the production of selenium enriched Saccharomyces cerevisiae. African journal of Biotechnology, 12 (20), 2972–2977.
  8. Chervonaya, S. S., Usacheva, O. A., Mirhaev, M. N. (2005). Vliyanie selenita natriya na rost drozhzhevyh kletok v proizvodtve piva. Mater. Mezhdunarodnogo s'ezda terapevtov i diagnostov, 194–195.
  9. L-selenomethionine as a source of selenium added for nutritional purposes to food supplements (2009). EFSA Journal, 7 (7), 1082. doi: 10.2903/j.efsa.2009.1082
  10. Baranovs'kiy, A. Yu., Kondrashina, E. A. (2002). Disbakterioz i disbioz kishechnika. Moscow: Grant, 224.
  11. Moyseenok, A. G., Kudryacheva, L. A., Rusina, E. D. (1996). Bifidobakterii i ih ispol'zovanie v klinike, meditsinskoy promyshlennosti i sel'skom hozyaystve. Moscow: Agropromizdat, 120.
  12. Picard, C., Fioramonti, J., Francois, A., Robinson, T., Neant, F., Matuchansky, C. (2005). Review article: bifidobacteria as probiotic agents – physiological effects and clinical benefits. Alimentary Pharmacology and Therapeutics, 22 (6), 495–512. doi: 10.1111/j.1365-2036.2005.02615.x
  13. Hadadji, M., Bensoltane, A. (2006). Growth and lactic acid production by Bifidobacterium longum and Lactobacillus acidophilus in goat’s milk. African Journal of Biotechnology, 5 (6), 505–509.
  14. Wisselink, H. W., Weusthuis, R. A., Eggink, G., Hugenholtz, J., Grobben, G. J. (2002). Mannitol production by lactic acid bacteria: a review. International Dairy Journal, 12 (2-3), 151–161. doi: 10.1016/s0958-6946(01)00153-4
  15. Ruas-Madiedo, P., Hugenholtz, J., Zoon, P. (2002). An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal, 12 (2-3), 163–171. doi: 10.1016/s0958-6946(01)00160-1
  16. Fávaro-Trindade, C. S., Grosso, C. R. F. (2002). Microencapsulation of L. acidophilus (La-05) and B. lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. Journal of Microencapsulation, 19 (4), 485–494. doi: 10.1080/02652040210140715
  17. Hassan, A. N., Frank, J. F., Shalabi, S. I. (2001). Factors affecting capsule size and production by lactic acid bacteria used as dairy starter cultures. International Journal of Food Microbiology, 64 (1-2), 199–203. doi: 10.1016/s0168-1605(00)00427-x
  18. Skal'naya, M. G., Notova, S. V. (2004). Makro- i mikroelementy v pitanii sovremennogo cheloveka: ekologo-fiziologicheskie i sotsial'nye aspekty. Moscow: ROSMEM, 300.
  19. Tapiero, H., Townsend, D. M., Tew, K. D. (2003). The antioxidant role of selenium and seleno-compounds. Biomedicine & Pharmacotherapy, 57 (3-4), 134–144. doi: 10.1016/s0753-3322(03)00035-0
  20. Gorelikova, G. A. (2008). Teoreticheskie i prakticheskie aspekty razrabotki pishchevyh produktov, obogashchennyh selenom. Moscow: Grant, 235.
  21. Zaretskaya, E. S., Gmoshinskiy, I. V., Mazo, V. K. (2002). Novye pishchevye istochniki mikroelementov: kontrol' kachestva. Rossiyskiy zhurnal gastroenterologii, gepatologii, koloproktologii, 5.
  22. Sneddon, A. (2012). Selenium nutrition and its impact on health. Food & Health Innovation Service.
  23. Mikulasova, M., Dusinsky, R. (2013). Probiotic supplementation: What nurse practitioners need to know to recommend safe and effective formulations. J. Biomed Res. Int., 13, 78–94.
  24. Yazdi, M., Mahdavi, M., Setayesh, N., Esfandyar, M., Shahverdi, A. (2013). Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. DARU Journal of Pharmaceutical Sciences, 21 (1), 33. doi: 10.1186/2008-2231-21-33
  25. Tabasco, R., Paarup, T., Janer, C., Peláez, C., Requena, T. (2007). Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk. International Dairy Journal, 17 (9), 1107–1114. doi: 10.1016/j.idairyj.2007.01.010
  26. Burrell, A. L., Dozier, W. A., Davis, A. J., Compton, M. M., Freeman, M. E., Vendrell, P. F., Ward, T. L. (2004). Responses of broilers to dietary zinc concentrations and sources in relation to environmental implications. British Poultry Science, 45 (2), 225–263. doi: 10.1080/00071660410001715867
  27. Kurek, E., Rusrczynska, A. (2016). Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei. Raczniki Panstuowego zakladu hihieny, 67 (3), 253–262.
  28. Eszenyi, P., Sztrik, A., Babka, B., Prokisch, J. (2011). Elemental, Nano-Sized (100-500 nm) Selenium Production by Probiotic Lactic Acid Bacteria. International Journal of Bioscience, Biochemistry and Bioinformatics, 148–152. doi: 10.7763/ijbbb.2011.v1.27
  29. Kaprellyanz, L., Zykovа, N., Petrosyants, A., Zykov, A. (2018). Development of biotechnology of getting selenium nanostructures with Lactobacillus acidophilus culture. EUREKA: Life Sciences, 1, 54–60. doi: 10.21303/2504-5695.2018.00560

Downloads

Published

2018-01-11

How to Cite

Zykova, N., Kaprellyanz, L., Petrosyants, A., & Zykov, A. (2018). Development of the biotechnology for obtaining a dietary supplement from the selenium-containing probiotic cultures Lactobacillus acidophilus 412/307 and Bifidobacterium bifidum 1. Eastern-European Journal of Enterprise Technologies, 1(11 (91), 40–49. https://doi.org/10.15587/1729-4061.2018.120785

Issue

Section

Technology and Equipment of Food Production