Study into effect of food fibers on the fermentation process of whey

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.120803

Keywords:

whey, food fibers, fermentation, yeast Zygosaccharomyces lactis 868-K, whey-plant wort with enhanced viscosity

Abstract

We report the results of research on the effect of food fibers on the fermentation process of whey – the base of beverages. By using the method of IR spectroscopy, we studied various forms of moisture bonds of apple pectin in fiber and orange fruit fibers Citri-Fi with water or whey. The results obtained show the existence of strong hydrogen bonds and high concentration of the movable proton. High sorption capacity for water is observed. This effect is important in terms of regulating the viscosity of wort. By employing mathematical modeling, we established conditions for the preparation and introduction of Citri-Fi to whey for obtaining beverages with enhanced viscosity. The visualization is provided of the transformations of dry Citri-Fi when swelling in whey – an increase in the volume of tubular fibers. For the basic indicators of fermentation (the content of carbon dioxide, the amount of formed ethyl alcohol and yeast cells, the content of reducing sugars) we defined rational conditions for the fermentation of whey-plant wort with enhanced viscosity. During fermentation using the race Zygosaccharomyces lactis 868-K, the most intensive growth of yeast cells at the level from 42.3 to 71.3 mln/cm3 was observed over the interval of 6…24 hours of fermentation. The dynamics of accumulation of carbon dioxide in wort is correlated to the indicators of growth in yeast cells. The data obtained indicate a certain oppression of yeast development in whey-plant wort. This is due to the presence of colloidal substances of whey and the residue of insoluble components of food fibers. We established a fermentation temperature of whey-plant wort with enhanced viscosity − 30…32 °C, at which there is a sufficient accumulation of ethyl alcohol at the level of 0.64...0.69 % by volume. Further increase or decrease in temperature results in a decrease in the amount of alcohol, indicating a decrease in the activity of cell enzymes. We have proven the possibility to apply the results obtained for developing a technology for manufacturing whey-based fermented beverages with enhanced viscosity

Author Biographies

Sergii Tsygankov, Institute of Food Biotechnology and Genomics NAS of Ukraine Osypovskoho str., 2A, Kyiv, Ukraine, 04123

Doctor of Technical Sciences, Senior Researcher

Olena Grek, National University of Food Technologies Volodymyrska str., 68, Kyiv, Ukraine, 03680

PhD, Associate Professor

Department of milk and dairy products technology

Olena Krasulya, National University of Food Technologies Volodymyrska str., 68, Kyiv, Ukraine, 03680

PhD, Associate Professor

Department of milk and dairy products technology

Olena Onopriichuk, National University of Food Technologies Volodymyrska str., 68, Kyiv, Ukraine, 03680

PhD, Associate Professor

Department of milk and dairy products technology

Larysa Chubenko, National University of Food Technologies Volodymyrska str., 68, Kyiv, Ukraine, 03680

Engineer

Department of milk and dairy products technology

Oleksandr Savchenko, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

PhD, Associate Professor

Department of technologies of meat, fish and marine products 

Olha Snizhko, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

PhD, Assistant

Department of technologies of meat, fish and marine products 

Оlena Ochkolyas, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

Assistant

Department of technologies of meat, fish and marine products

References

  1. Khramtsov, A. G. (2011). The phenomenon of milk whey. Saint Petersburg: Profession, 145–152.
  2. Hinkova, A., Zidova, P., Pour, V., Bubnik, Z., Henke, S., Salova, A., Kadlec, P. (2012). Potential of Membrane Separation Processes in Cheese Whey Fractionation and Separation. Procedia Engineering, 42, 1425–1436. doi: 10.1016/j.proeng.2012.07.536
  3. Pan, K., Song, Q., Wang, L., Cao, B. (2011). A study of demineralization of whey by nanofiltration membrane. Desalination, 267 (2-3), 217–221. doi: 10.1016/j.desal.2010.09.029
  4. Rektor, A., Vatai, G. (2004). Membrane filtration of Mozzarella whey. Desalination, 162, 279–286. doi: 10.1016/s0011-9164(04)00052-9
  5. Baldasso, C., Barros, T. C., Tessaro, I. C. (2011). Concentration and purification of whey proteins by ultrafiltration. Desalination, 278 (1-3), 381–386. doi: 10.1016/j.desal.2011.05.055
  6. Wu, L., Xu, C., Li, S., Liang, J., Xu, H., Xu, Z. (2017). Efficient production of lactulose from whey powder by cellobiose 2-epimerase in an enzymatic membrane reactor. Bioresource Technology, 233, 305–312. doi: 10.1016/j.biortech.2017.02.089
  7. Zohri, A.-N. A., Gomah, N. H., Maysa, A. A. (2014). Utilization of cheese whey for bio-ethanol production. Universal Journal of Microbiology Research, 2 (4), 57–73.
  8. Bulatovic, M., Rakin, M., Mojovic, L., Nikolic, S., Vukasinovic-Sekulic, M., Djukic-Vukovic, A. (2012). Whey as a raw material for the production of functional beverages. Hemijska Industrija, 66 (4), 567–579. doi: 10.2298/hemind111124009b
  9. Jelicic, I., Bozanic, R., Tratnik, L. (2008). Whey based beverages – new generation of dairy products. Mljekarstvo, 58 (3), 257–274.
  10. S. Gad, A., H. Emam, W., F. Mohamed, G., F. Sayd, A. (2013). Utilization Whey in Production of Functional Healthy Beverage “Whey-mango Beverages.” American Journal of Food Technology, 8 (3), 133–148. doi: 10.3923/ajft.2013.133.148
  11. Baccouche, A., Ennouri, M., Felfoul, I., Attia, H. (2013). A physical stability study of whey-based prickly pear beverages. Food Hydrocolloids, 33 (2), 234–244. doi: 10.1016/j.foodhyd.2013.03.007
  12. Tkachenko, N., Nekrasov, P., Vikul, S., Honcharuk, Y. (2017). Modelling formulae of strawberry whey drinks of prophylactic application. Food Science and Technology, 1 (11), 80–88. doi: 10.15673/fst.v11i1.303
  13. Farah, J. S., Araujo, C. B., Melo, L. (2017). Analysis of yoghurts', whey-based beverages' and fermented milks' labels and differences on their sensory profiles and acceptance. International Dairy Journal, 68, 17–22. doi: 10.1016/j.idairyj.2016.12.008
  14. Gallardo-Escamilla, F. J., Kelly, A. L., Delahunty, C. M. (2007). Mouthfeel and flavour of fermented whey with added hydrocolloids. International Dairy Journal, 17 (4), 308–315. doi: 10.1016/j.idairyj.2006.04.009
  15. Evdokimov, I. A., Volodin, D. N. (2016). Sovremennoe sostoyanie i perspektivy pererabotki molochnoy syvorotki. Pererabotka moloka, 8, 10–13.
  16. Hramtsov, A. G., Nesterenko, P. G., Evdokimov, I. A. et. al. (2014). Al'ternativnye varianty promyshlennoy pererabotki molochnoy syvorotki. Molochnaya promyshlennost', 11, 44–48.
  17. Jelen, P. (2011). Whey Processing. Utilization and Products. Encyclopedia of Dairy Sciences, 731–737. doi: 10.1016/b0-12-227235-8/00511-3
  18. Kumar, N., Vandna, Hati, S. (2015). Fermented and non fermented whey beverages. Beverage & food world, 42 (4), 28–31.
  19. Chavan, R. S., Shraddha, R. C., Kumar, A., Nalawade, T. (2015). Whey Based Beverage: Its Functionality, Formulations, Health Benefits and Applications. Journal of Food Processing & Technology, 6 (10). doi: 10.4172/2157-7110.1000495
  20. Suhih, S. А., Frolov, S. V. (2008). Technology of tonics based on the secondary raw milk. Achievements of Science and Technology of AIC, 5, 54–55.
  21. Pescuma, M., Hébert, E. M., Mozzi, F., Font de Valdez, G. (2010). Functional fermented whey-based beverage using lactic acid bacteria. International Journal of Food Microbiology, 141 (1-2), 73–81. doi: 10.1016/j.ijfoodmicro.2010.04.011
  22. Eltcova E. V. (2001). Development of technology for soft drinks based on fruit and berries with whey. Kemerovo University of Food Technology, 1–19.
  23. Baccouche, A., Ennouri, M., Felfoul, I., Attia, H. (2013). A physical stability study of whey-based prickly pear beverages. Food Hydrocolloids, 33 (2), 234–244. doi: 10.1016/j.foodhyd.2013.03.007
  24. Grek, О., Krasulya, O. (2013). Study of effect fibers on the communication forms of moisture in mixture with milk whey. Food chemistry and technology, 47, 15–21.
  25. Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E., Kneifel, W. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Science and Technology, 56 (2), 211–221. doi: 10.1016/j.lwt.2013.12.004
  26. Kohajdová, Z., Karovičová, J., Magala, M., Kuchtová, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68 (8). doi: 10.2478/s11696-014-0567-1
  27. Min, B., Bae, I. Y., Lee, H. G., Yoo, S.-H., Lee, S. (2010). Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresource Technology, 101 (14), 5414–5418. doi: 10.1016/j.biortech.2010.02.022
  28. Spohner, S. C., Schaum, V., Quitmann, H., Czermak, P. (2016). Kluyveromyces lactis: An emerging tool in biotechnology. Journal of Biotechnology, 222, 104–116. doi: 10.1016/j.jbiotec.2016.02.023
  29. Rodrigues, B., Lima-Costa, M. E., Constantino, A., Raposo, S., Felizardo, C., Gonçalves, D. et. al. (2016). Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey. Enzyme and Microbial Technology, 92, 41–48. doi: 10.1016/j.enzmictec.2016.06.012
  30. Tsygankov, S., Grek, O., Krasulya, O., Onopriichuk, O., Chubenko, L., Savchenko, O. et. al. (2018). Methods of determination of parameters of whey with food fibers. EUREKA: Life Sciences, 1, 69–76. doi: 10.21303/2504-5695.2018.00534
  31. Lima, A. F., Cavalcante, K. F., de Freitas, M. de F. M., Rodrigues, T. H. S., Rocha, M. V. P., Gonçalves, L. R. B. (2013). Comparative biochemical characterization of soluble and chitosan immobilized β-galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochemistry, 48 (3), 443–452. doi: 10.1016/j.procbio.2013.02.002

Downloads

Published

2018-01-11

How to Cite

Tsygankov, S., Grek, O., Krasulya, O., Onopriichuk, O., Chubenko, L., Savchenko, O., Snizhko, O., & Ochkolyas О. (2018). Study into effect of food fibers on the fermentation process of whey. Eastern-European Journal of Enterprise Technologies, 1(11 (91), 56–62. https://doi.org/10.15587/1729-4061.2018.120803

Issue

Section

Technology and Equipment of Food Production