Determination of the enzyme destruction rational mode of biomass autolysate of lactic acid bacteria

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.120877

Keywords:

biomass, lactic acid bacteria, autolysate, enzymatic hydrolysis, pancreatin, peptidoglycan, muramyl peptide, immunotropic properties, mathematical modeling

Abstract

It is shown that the degradation products of peptidoglycans of lactic acid bacteria cell walls that are related to the muramyl peptide series compounds are promising components of food ingredients and dietary supplements for the nutritional support of the population suffering from disorders of the immune system.

The expediency of autolysis of lactic acid bacteria biomass to increase the enzymatic degradation efficiency of peptidoglycans of their cell walls has been proven. The accumulation of low molecular weight peptides in the enzymatic hydrolysis of biomass under rational parameters, which was not subjected to autolysis, is 0.260 mg/cm3, in the enzymatic hydrolysis of biomass that was subjected to autolysis is 0.569 mg/cm3. Rational regimes of enzymatic hydrolysis of the composition of lactic acid bacteria (enzyme concentration of 12.5 mg/cm3, substrate concentration of 70.0 mg/cm3, duration of enzymatic hydrolysis of 245.6 min) were determined using mathematical planning methods of multifactorial experiments, which made it possible to significantly optimize and improve the work efficiency.

The affiliation of low molecular weight peptides obtained under the rational conditions of enzymatic hydrolysis to immunological compounds of the muramyl peptide series has been proven by gel chromatography and IR spectroscopy methods. It is determined that the molecular weight of the obtained low molecular weight peptides is in the range of 294 – 650 Da, which, in fact, corresponds to the molecular weight of muramyl dipeptide and glucosaminylmuramyl dipeptide. In the IR spectrum of low molecular weight peptides, the absorption bands are noted, which correspond to fluctuations of free amino groups, peptide bonds, which, in fact, occur in the structure of peptides, pyranose glucose forms that are part of muramic acid and N-acetylglucosamine of peptidoglycan, muramyl dipeptide and glucosaminylmuramyl dipeptide. Also, fluctuations of β-glycoside bonds, which binds the remains of muramic acid and N-acetylglucosamine in peptidoglycan and glucosaminylmuramyl dipeptide are marked in the IR spectrum of low molecular weight peptides

Author Biographies

Antonina Kapustian, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

PhD, Associate Professor

Department of Food Chemistry

Natalia Cherno, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor, Head of Department

Department of Food Chemistry

Georgii Stankevich, Odessa National Academy of Food Technologies Kanatna str., 112, Odessa, Ukraine, 65039

Doctor of Technical Sciences, Professor, Head of Department

Department of Technology for Storage of Grain

Iryna Kolomiiets, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv Pekarska str., 50, Lviv, Ukraine, 79010

PhD, Associate Professor

Department of Normal and Pathological Physiology named after S. V. Stoianovskiy

Oksana Matsjuk, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv Pekarska str., 50, Lviv, Ukraine, 79010

PhD, Assistant

Department of Normal and Pathological Physiology named after S. V. Stoianovskiy 

Lubov Musiy, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv Pekarska str., 50, Lviv, Ukraine, 79010

PhD, Senior Lecturer

Department of Technology of milk and milk products

Iryna Slyvka, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv Pekarska str., 50, Lviv, Ukraine, 79010

PhD, Assistant

Department of Technology of milk and milk products

References

  1. Kapustyan A., Cherno N. Immunological properties of the bacterial origin compounds. Food science and technology. 2016. Vol. 10, Issue 3. P. 19–28. doi: 10.15673/fst.v10i3.175
  2. Traub, S., von Aulock, S., Hartung, T., Hermann, C. (2006). MDP and other muropeptides – direct and synergistic effects on the immune system. Journal of Endotoxin Research, 12 (2), 69–85. doi: 10.1179/096805106x89044
  3. Lv, Q., Yang, M., Liu, X., Zhou, L., Xiao, Z., Chen, X. et. al. (2012). MDP Up-Regulates the Gene Expression of Type I Interferons in Human Aortic Endothelial Cells. Molecules, 17 (12), 3599–3608. doi: 10.3390/molecules17043599
  4. Matsui, K., Ikeda, R. (2014). Peptidoglycan in combination with muramyldipeptide synergistically induces an interleukin-10-dependent T helper 2-dominant immune response. Microbiology and Immunology, 58 (4), 260–265. doi: 10.1111/1348-0421.12139
  5. Kapustyan, A. I., Cherno, N. K. (2015). Prospects for using bioactive bacterial hydrolysates for nutritional supplementation of people with immune system disorders. Journal of Food Science and Technology, 9 (2), 18–25. doi: 10.15673/2073-8684.31/2015.44263
  6. Andronova, T. M., Pinegin, B. V., Kozlov, I. G. (2008). Likopid (GMPD) – sovremenniy otechestvenniy vysokoeffektivniy immunomodulyator. Moscow, 24.
  7. Karaulov, A. V., Kalyuzhin, O. V., Likov, V. F. et. al. (2002). Proizvodnye muramildipeptida v klinike. Aktual'nye voprosy klinicheskoy meditsiny, 2, 93–100.
  8. Barišić, L., Roščić, M., Kovačević, M., Semenčić, M. Č., Horvat, Š., Rapić, V. (2011). The first ferrocene analogues of muramyldipeptide. Carbohydrate Research, 346 (5), 678–684. doi: 10.1016/j.carres.2011.01.006
  9. Shaphaev, E. G., Tsyrenov, V. Zh., Chebunina, E. I. (2015). Dezintegratsiya kletok v biotekhnologii. Ulan-Ude, 96.
  10. Humann, J., Lenz, L. L. (2008). Bacterial Peptidoglycan-Degrading Enzymes and Their Impact on Host Muropeptide Detection. Journal of Innate Immunity, 1 (2), 88–97. doi: 10.1159/000181181
  11. Kapustian, А. (2017). Characterization of the bacterial origin immunotropic functional ingredients obtained through a physical impact. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 19 (75), 13–18. doi: 10.15421/nvlvet7503
  12. Gavrilin, M. V., Sen'chukova, G. V., Senchenko, S. P. (2007). Vybor optimal'nyh usloviy polucheniya gidrolizatov molochnokislyh bakteriy termokislotnym sposobom. Himiko-farmatsevticheskiy zhurnal, 41 (2), 54–56.
  13. Senchenko, S. P., Samoylov, V. A., Gostishcheva, N. M., Sen'chukova, G. V., Gavrilin, M. V. (2005). Izuchenie sostava preparata, poluchennogo na osnove gidrolizata molochnokislyh bakteriy. Himiko-farmatsevticheskiy zhurnal, 39 (3), 51–53.
  14. Garanyan, G. S., Hanferyan, R. A., Oganesyan, E. T. (2010). Himicheskoe obosnovanie i biologicheskoe issledovanie gidrolizata na osnove kul'tur molochnokislyh bakteriy. Himiko-farmatsevticheskiy zhurnal, 44 (8), 46–49.
  15. Molohova, E. I., Sorokina, Yu. V. (2011). Razrabotki otechestvennyh metabolitnyh probiotikov i ih standartizatsiya. Sibirskiy meditsinskiy zhurnal, 26 (15), 29–33.
  16. Glushanova, N. A. (2003). Biologicheskie svoystva laktobatsill. Byulleten' sibirskoy meditsiny, 4, 50–58
  17. Chapot-Chartier, M.-P., Kulakauskas, S. (2014). Cell wall structure and function in lactic acid bacteria. Microbial Cell Factories, 13 (Suppl 1), S9. doi: 10.1186/1475-2859-13-s1-s9
  18. Stoyanova, L. G., Ustyugova, E. A., Netrusov, A. I. (2012). Antimikrobnye metabolity molochnokislyh bakteriy: raznoobrazie i svoystva (obzor). Prikladnaya biohimiya i mikrobiologiya, 48 (3), 259–275.
  19. Kapustian, A., Cherno, N. (2018). Obtaining and characteristic of the autolysate of lactic acid bacteria. EUREKA: Life Sciences, 1, 24–31. doi: 10.21303/2504-5695.2018.00558
  20. Ostapchuk, N. V., Kaminskiy, V. D., Stankevich, G. N., Chuchuy, V. P.; Ostapchuk N. V. (Ed.) (1992). Matematicheskoe modelirovanie protsessov pishhevykh proizvodstv. Kyiv: Vischa shkola, 175.
  21. Semak, I. V., Zyryanova, T. N., Gubich, O. I. (2007). Biohimiya belkov. Minsk: BGU, 49.
  22. Tarasevich, B. N. (2012). IK-spektry osnovnyh klassov organicheskih soedineniy. Moscow, 54.

Downloads

Published

2018-01-12

How to Cite

Kapustian, A., Cherno, N., Stankevich, G., Kolomiiets, I., Matsjuk, O., Musiy, L., & Slyvka, I. (2018). Determination of the enzyme destruction rational mode of biomass autolysate of lactic acid bacteria. Eastern-European Journal of Enterprise Technologies, 1(11 (91), 63–68. https://doi.org/10.15587/1729-4061.2018.120877

Issue

Section

Technology and Equipment of Food Production