A study of the effect of electrostatic processing on performance characteristics of axle oil
DOI:
https://doi.org/10.15587/1729-4061.2018.120977Keywords:
axle oil, electrostatic processing, motor-axial bearing, wheels and motors unit, wear rateAbstract
The effect of electrostatic processing on performance characteristics of axle oil is investigated. Axle oil is used for wetting motor-axial bearings (MAB) of locomotives. There is a pressing and urgent problem of the MAB service life, which is indirectly related to the underdeveloped reserves of anti-wear properties of axle oil. To study them, it was decided to use the method of electrostatic processing, which does not require the introduction of any additives and has proven its effectiveness in the studies of other mineral oils. It is based on the ability of electric fields to destroy micellar aggregates in oil and form a solid boundary layer of molecules on friction surfaces. In the context of solving the current problem of the MAB service life, this method wasn’t considered earlier.
The research was carried out by means of the «roller-pad» friction pair, which was wetted with axle oil at different load conditions and operating times. The dependences of wear of the experimental samples under different load conditions, oil operating times and degrees of electric processing are obtained.
The results show that when using axle oil subjected to ESP, the wear rate of the experimental samples is reduced. Wear rate reduction depends on the oil operating time in the lubrication system. The greatest wear rate reduction of 1.92 times is noted for fresh oil. For the oil state after the locomotive run of 75 thousand km, the reduction is about 1.68 times and for the oil at the end of its service life, wear rate reduction is approximately 1.47 times.
References
- Sergienko, N. I. (2010). Reshenie problemy podvizhnogo sostava zheleznyh dorog Ukrainy cherez vzaimodeystvie gosudarstvennogo i chastnogo sektorov ekonomiki. Lokomotiv-inform, 6, 40–46.
- Sergienko, N. I. (2011). Podvizhnoy sostav zheleznyh dorog Ukrainy: sostoyanie i perspektivy. Lokomotiv-inform, 6, 15–24.
- Kalabukhin, Yu. Ye. (2008). Analiz suchasnoho stanu tiahovoho rukhomoho skladu zaliznyts Ukrainy. Lokomotiv-inform, 11, 4–5.
- Pro zatverdzhennia prohramy onovlennia lokomotyvnoho parku zaliznyts Ukrainy na 2012–2016 roky (2011). Zbirnyk uriadovykh aktiv Ukrainy, 61, 7–8.
- Rukovodstvo po tekhnicheskomu obsluzhivaniyu i tekushchemu remontu teplovozov 2TE116. TE116 IO (2004). Moscow, 406.
- Biryukov, I. V., Belyaev, A. I., Rybnikov, E. K. (1986). Tyagovye peredachi elektropodvizhnogo sostava zheleznyh dorog. Moscow: Transport, 256.
- Azarenko, V. A., Germanov, A. N. (1988). Povyshenie nadezhnosti motorno-osevyh podshipnikov lokomotivov. Vestnik VNII zheleznodorozhnogo transporta, 2, 36–40.
- Vinkler, F. (2008). Rol' obsluzhivaniya i remonta teplovozov v sovremennyh usloviyah. Lokomotiv-inform, 2, 24–26.
- Orlov, Yu. A., Yanov, V. P. (2010). Bazovaya platforma dlya rossiyskih elektrovozov novogo pokoleniya. Lokomotiv-inform, 3, 7–9.
- Konovalov, P. Ye. (2013). Physical model of wear of motor-axial bearing of locomotive. Eastern-European Journal of Enterprise Technologies, 1 (7 (61)), 25–29. Available at: http://journals.uran.ua/eejet/article/view/9320/8089
- Voronin, S., Skoryk, O., Stefanov, V., Onopreychuk, D., Korostelov, Y. (2017). Study of the predominant defect development in rails of underground systems after preventive grinding and lubrication. MATEC Web of Conferences, 116, 03005. doi: 10.1051/matecconf/201711603005
- Voronin, S., Hrunyk, I., Stefanov, V., Volkov, O., Onopreychuk, D. (2017). Research into frictional interaction between the magnetized rolling elements. Eastern-European Journal of Enterprise Technologies, 5 (7 (89)), 11–16. doi: 10.15587/1729-4061.2017.109523
- Balabin, V. N., Kakotkin, V. Z. (2007). Primenenie sovremennyh tribotekhnicheskih tekhnologiy v lokomotivnom hozyaystve. Visnyk Skhidnoukrainskoho natsionalnoho universytetu imeni V. Dalia, 168–173.
- Kovalenko, D. M. (2006). Vykorystannia novitnikh materialiv dlia pidvyshchennia stroku zhyttievoho tsyklu tiahovykh elektrychnykh dvyhuniv manevrovykh teplovoziv. Ukrainska derzhavna akademiya zaliznychnoho transportu, 72, 169–175.
- Romanov, S. M., Romanov, D. S., Naysh, N. M. et. al. (2002). Novoe pokolenie motorno-osevyh podshipnikov tyagovyh elektrodvigateley lokomotivov iz materiala Romanit-N. Zaliznychnyi transport Ukrainy, 4, 16–20.
- Borodin, A. V., Taruta, D. V. (2002). Podshipnikovyy uzel kolesno-motornogo bloka: svidetel'stvo na poleznuyu model' No. 27943. MKI F16C19/00. declareted: 17.07.2002; published: 27.02.2003, Bul. No. 6.
- Borodin, A. V., Taruta, D. V. (2005). Prinuditel'naya sistema smazyvaniya motorno-osevyh podshipnikov elektrodvigatelya lokomotiva: pat. No. 2255253 RF. MKI F16C33/10. published: 27.06.2005. Bul. No. 18.
- Simdyankin, A. A., Uspensky, I. A., Pashchenko, V. M., Starunsky, A. V. (2017). Ultrasonic machining of engine lubricating oil during tribotechnical testing. Journal of Friction and Wear, 38 (4), 311–315. doi: 10.3103/s1068366617040134
- Bolotov, A. N., Novikov, V. V., Novikova, O. O. (2017). The Research of Tribotechnical Characteristics of Nanostructured Magnetic Lubricating Oils with Various Dispersive Media. Academic Journal, 38 (2), 107–113.
- Dmitrichenko, N. F., Milanenko, A. A., Savchuk, A. N., Bilyakovich, O. N., Turitsa, Y. A., Pavlovskiy, M. V., Artemuk, S. I. (2016). Improving the efficiency of lubricants by introducing friction modifiers for tracked vehicles under stationary conditions of friction. Journal of Friction and Wear, 37 (5), 441–447. doi: 10.3103/s1068366616050044
- Voronin, S. V., Dunaev, A. V. (2015). Effects of electric and magnetic fields on the behavior of oil additives. Journal of Friction and Wear, 36 (1), 33–39. doi: 10.3103/s1068366615010158
- Ermakov, S. F. (2012). Effect of lubricants and additives on the tribological performance of solids. Part 2. Active friction control. Journal of Friction and Wear, 33 (3), 217–223. doi: 10.3103/s106836661203004x
- Lyubimov, D. N., Dolgopolov, K. N., Kozakov, A. T., Nikolskii, A. V. (2011). Improvement of performance of lubricating materials with additives of clayey minerals. Journal of Friction and Wear, 32 (6), 442–451. doi: 10.3103/s1068366611060092
- Tochil’nikov, D. G., Kupchin, A. N., Lyashkov, A. I., Ponyaev, S. A., Shepelevskii, A. A., Ginzburg, B. M. (2012). Effect of fullerene black additives on boundary sliding friction of steel counterbodies lubricated with mineral oil. Journal of Friction and Wear, 33 (2), 94–100. doi: 10.3103/s1068366612020122
- Voronin, S. V., Suranov, A. V., Suranov, A. A. (2017). The effect of carbon nanoadditives on the tribological properties of industrial oils. Journal of Friction and Wear, 38 (5), 359–363. doi: 10.3103/s1068366617050130
- Aleksandrov, E. E., Kravets, I. A., Lysikov, E. N. et. al. (2006). Povyshenie resursa tekhnicheskih sistem putem ispol'zovaniya elektricheskih i magnitnyh poley. Kharkiv: NTU «KhPI», 544.
- Lysikov, E. N., Voronin, S. V., Konovalov, P. E. (2010). Ispol'zovanie effekta elektroobrabotki zhidkih smazochnyh sred v tyazhelyh rezhimah raboty podshipnikov. Ukrainska derzhavna akademiya zaliznychnoho transportu, 115, 122–127.
- Instruktsiya TsT-0060 z vykorystannia mastylnykh materyaliv na tiahovomu rukhomomu skladi zaliznyts Ukrainy (2003). Kyiv: Derzh. admin. zalizn. transportu Ukrainy, 54.
- Sidenko, V. M., Grushko, I. M. (1977). Osnovy nauchnyh issledovaniy. Kharkiv: Vysshaya shkola, 287.
- Braun, E. D., Evdokimov, Yu. A., Chichinadze, A. V. (1982). Modelirovanie treniya iznashivaniya v mashinah. Moscow: Mashinostroenie, 191.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Pavlo Konovalov, Serhii Voronin, Dmytro Onopreychuk, Volodymyr Stefanov, Viktor Pashchenko, Hennadii Radionov, Viktor Temnikov, Aleksandr Onoprienko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.