Experimental study of the method of locomotive wheel­rail angle of attack control using acoustic emission

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.122131

Keywords:

angle of attack, acoustic emission, wheel pair, control, stand, spectral analysis, information measuring system

Abstract

The methods for determining the locomotive wheel-rail angle of attack are considered. To reduce the power impact of the wheel flange with the rail head when the locomotive moves on curved sections of the track, it is advisable to change the locomotive wheel-rail angle of attack by turning the wheel pairs. Controlling the locomotive wheel pair position is possible by means of an operational measurement of the actual wheel-rail angle of attack. Measurement of the wheel-rail angle of attack is not performed because it is impossible to determine the value directly.

It is proposed to measure the locomotive wheel-rail angle of attack when the wheel pair moves in the rail track on the basis of the method of acoustic emission resulting from the wheel-rail contact interaction. An information measuring system has been developed for the determination and analysis of acoustic emission from the wheel-rail contact consisting of: a stand roller magnet, a speed sensor, a directional microphone, an analog-digital card, a sound level meter. The obtained experimental data of acoustic emission from the contact of the roller stand wheel with the roller during motion are analyzed. The dependence of the acoustic emission of the locomotive wheel-rail contact interaction on the values of the maximum deviation of the sound pressure level from the equivalent level in the frequency range 200...300 Hz is revealed.

The obtained analytical dependence of the maximum deviation of the sound pressure level from the equivalent at different values of wheel-rail angles of attack can be used to create an automatic control system of the wheel pair position in the rail track.

Author Biography

Sergii Kliuiev, Volodymyr Dahl East Ukrainian National University Tsentralnyi ave., 59-a, Severodonetsk, Ukraine, 93406

PhD

Department of logistics management and traffic safety in transport

References

  1. Kliuiev, S. O. (2016). Pidvyshchennia bezpeky rukhu na zaliznytsi. Visnyk SNU im. V. Dalia. Sievierodonetsk, 1 (225), 104–107.
  2. Kliuiev, S. O. (2017). Analiz metodiv identyfikatsiyi zaliznychnoho rukhomoho skladu. Visnyk SNU im. V. Dalia. Sievierodonetsk, 3 (233), 85–89.
  3. Kudinov, D., Shaydurov, G. (2009). Non-contact nondestructive rail testing. 2009 International Siberian Conference on Control and Communications. doi: 10.1109/sibcon.2009.5044873
  4. Shapran, E. (2005). Primenenie metoda akusticheskoy emissii dlya issledovaniya processa formirovaniya scepnyh harakteristik kontakta koleso – rel's. Vestnik VNIIZHT, 5, 31–35.
  5. Masliev, V. G. (1999). Osobennosti dinamiki rel'sovyh ekipazhey s ustroystvami dlya radial'noy ustanovki kolesnyh par v krivyh. Mekhanika ta mashynobuduvannia, 1, 161–165.
  6. Xing, Z., Chen, Y., Wang, X., Qin, Y., Chen, S. (2016). Online detection system for wheel-set size of rail vehicle based on 2D laser displacement sensors. Optik – International Journal for Light and Electron Optics, 127 (4), 1695–1702. doi: 10.1016/j.ijleo.2015.11.053
  7. Kim, M.-S. (2012). Measurement of the wheel-rail relative displacement using the image processing algorithm for the active steering wheelsets. International journal of systems applications, engineering and development, 6 (1), 114–121.
  8. Simson, S., Cole, C. (2008). Control alternatives for yaw actuated force steered bogies. IFAC Proceedings Volumes, 41 (2), 8281–8286. doi: 10.3182/20080706-5-kr-1001.01400
  9. Matsumoto, A., Sato, Y., Ohno, H., Tomeoka, M., Matsumoto, K., Kurihara, J. et. al. (2008). A new measuring method of wheel–rail contact forces and related considerations. Wear, 265 (9-10), 1518–1525. doi: 10.1016/j.wear.2008.02.031
  10. Kalivoda, J., Bauer, P. (2016). Roller Rig Tests with Active Stabilization of a Two-Axle Bogie. Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance. Civil-Comp Press, Stirlingshire, United Kingdom. doi: 10.4203/ccp.110.96
  11. Thompson, D., Jones, C. (2009). Noise and vibration from the wheel–rail interface. Wheel–Rail Interface Handbook, 477–509. doi: 10.1533/9781845696788.1.477
  12. Cui, X. L., Chen, G. X., Yang, H. G., Zhang, Q., Ouyang, H., Zhu, M. H. (2015). Effect of the wheel/rail contact angle and the direction of the saturated creep force on rail corrugation. Wear, 330-331, 554–562. doi: 10.1016/j.wear.2014.12.046
  13. Kudinov, D. S., Shaydurov, G. Ya. (2009). Problemy nerazrushayushchego kontrolya rel'sovyh putey na zheleznodorozhnom transporte. Datchiki i Sistemy, 10, 19–27.
  14. Kudinov, D. S., Shaydurov, T. Ya. (2010). Beskontaktnaya defektoskopiya zheleznodorozhnyh putey na osnove parametricheskoy modulyacii elektromagnitnyh voln SVCh diapazona. XV Vserossiyskaya nauchno-prakticheskaya konferenciya «Radiolokaciya, navigaciya i svyaz'». Vol. 1. Voronezh, 852–858.
  15. Kudinov, D. S., Shaydurov, G. Ya. (2008). Problema distancionnogo metoda nerazrushayushchego kontrolya rel'sov na zheleznodorozhnom transporte. Sovremennye problemy radioelektroniki. Krasnoyarsk, 147–150.
  16. Thompson, D. J., Jones, C. J. C. (2000). A review of the modelling of wheel/rail noise generation. Journal of Sound and Vibration, 231 (3), 519–536. doi: 10.1006/jsvi.1999.2542
  17. Nosko, G. S., Koshechkina, N. I. (2011). K voprosu o mekhanizme zvukoobrashchovaniya ot kontaktnogo vzaimodeystviya kolesa i rel'sa. Vestnik VNU im. V. Dalya, 4 (158), 102–106.
  18. Thompson, D. J. (2009). Railway noise and vibration. Mechanisms, modeling and means of control. Elsevier, 519.
  19. Spiryagin, M., Lee, K. S., Yoo, H. H., Spiryagin, V., Klyuyev, S. (2009). Study on using noise for development of active steering control system of rail vehicle. Proceedings of the 23nd National Conference and Exposition on Noise Control Engineering (Noise-Con 2008) (and the Sound Quality Symposium). USA: Curran Associates, Inc., 499–506.
  20. Hsu, S. S., Huang, Z., Iwnicki, S. D., Thompson, D. J., Jones, C. J. C., Xie, G., Allen, P. D. (2007). Experimental and theoretical investigation of railway wheel squeal. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221 (1), 59–73. doi: 10.1243/0954409jrrt85
  21. Kliuiev, O. S., Kliuiev, S. O., Spiriahin, V. I., Horbunov, M. I., Ulshyn, V. O., Kravchenko, K. O. (2009). Pat. No. 45683 UA. Stend dlia doslidzhennia vzaiemodiyi kolesa z reikoiu zaliznychnoho transportu. MPK (2009), G01M 17/007. No. u200904393; declareted: 05.05.2009; published: 25.11.2009, Bul. No. 22.
  22. Golubenko, A. L., Malohatko, A. A., Klyuev, S. A., Klyuev, A. S. (2011). The application review on the rolling stock of devices for turn of wheel pairs in the horizontal plane. Teka, 11A, 5–11.
  23. Kliuiev, S. O. (2017). Znyzhennia znosu v systemi “koleso-reika” udoskonalennia avtomatyzatsiyi protsesu lubrykatsiyi hrebenia kolesa. Visnyk natsionalnoho universytetu “Lvivska politekhnika”. Seriya: dynamika, mitsnist ta proektuvannia mashyn i pryladiv, 866, 157–161.

Published

2018-03-22

How to Cite

Kliuiev, S. (2018). Experimental study of the method of locomotive wheel­rail angle of attack control using acoustic emission. Eastern-European Journal of Enterprise Technologies, 2(9 (92), 69–75. https://doi.org/10.15587/1729-4061.2018.122131

Issue

Section

Information and controlling system