Quality assessment of control over the traction valve-inductor drive of a hybrid diesel locomotive

Authors

DOI:

https://doi.org/10.15587/1729-4061.2018.122422

Keywords:

traction valve-inductor engine, modal controller, fuzzy controller, hybrid shunting locomotive

Abstract

We have studied the valve-inductor drive for its application as a traction motor in a hybrid locomotive. We identifying parameters of the valve-inductor engine and built its simulation model based on a Lagrange equation. The model constructed makes it possible to take into consideration non-linearity of the engine. We have synthesized a modal speed controller and a controller based on fuzzy logic for the valve-inductor drive of a hybrid locomotive. The operation of two types of controllers was analyzed in terms of their influence on the basic quality indicators of control; it was found that the fuzzy controller was better at processing the set value of input magnitude. We have designed a simulation model of the traction valve-inductor drive of a hybrid locomotive with a fuzzy speed controller, and studied its work along a railroad section with actual profile and limitations.

Control systems based on a modal controller and fuzzy logic were synthesized. It is established that the modal controller has the following quality indicators: maximal overshoot – 12.27 %, re-adjustment time – 5.08 s, number of oscillations – 2. For the FPID-controller, the quality indicators are: 3.75 %, 3.01 s, and 1, respectively. Thus, on analyzing the quality of their operation, it was found that the best indicators were demonstrated by the FPID- controller.

The built physical model of the valve-inductor drive, specifically the system wheelset-engine with a control system that employs the fuzzy algorithm of speed regulation, confirms the feasibility of a fuzzy controller.

Author Biographies

Serhii Buriakovskyi, Scientific Research and Design Institute "Molniya" National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Deputy Director 

Mykhailo Babaiev, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Doctor of Technical Sciences, Professor, Head of Department

Department of electroenergy, electrical equipment and electromecanics 

Borys Liubarskyi, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of electrical transport and diesel locomotive

Artem Maslii, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of electroenergy, electrical equipment and electromecanics 

Nadezhda Karpenko, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

PhD, Associate Professor

Department of electroenergy, electrical equipment and electromecanics 

Danylo Pomazan, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkiv, Ukraine, 61050

Postgraduate student

Department of electroenergy, electrical equipment and electromecanics 

Andrii Maslii, LTD «Ukrtranssignal» Lui Pastera str., 2, Kharkiv, Ukraine, 61075

Engineer

Igor Denys, PJSC «KARTEL.» Dniprovske shose str., 84a, Kryvyi Rih, Ukraine, 50026

General director

References

  1. Efimenko, Yu. I., Kovalev, V. I., Loginov, S. I.; Efimenko, Yu. I. (Ed.) (2014). Zheleznye dorogi. Obshchiy kurs. Moscow: UMC ZHDT, 503.
  2. Koseki, T. (2010). Technical trends of railway traction in the world. The 2010 International Power Electronics Conference ECCE ASIA. doi: 10.1109/ipec.2010.5544539
  3. Drofenik, U., Canales, F. (2014). European trends and technologies in traction. 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 – ECCE ASIA). doi: 10.1109/ipec.2014.6869715
  4. Akli, C., Sareni, B., Roboam, X., Jeunesse, A. (2009). Integrated optimal design of a hybrid locomotive with multiobjective genetic algorithms. International Journal of Applied Electromagnetics and Mechanics, 151–162.
  5. Hou R., Yang Y., Emadi A. (2014). Hybrid electric locomotive powertrains. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). doi: 10.1109/itec-ap.2014.6940843
  6. Kurz, H. (1999). Rolling across Europe's vanishing frontiers [electric railway technology]. IEEE Spectrum, 36 (2), 44–49. doi: 10.1109/6.744875
  7. Ryabov, E. S., Lyubarskiy, B. G., Over'yanova, L. V., Emel'yanov, V. L. (2009). Imitacionnaya model' tyagovogo ventil'no-induktornogo elektroprivoda. Elektrotekhnika i elektromekhanika, 67–72.
  8. Sezen, S., Karakas, E., Yilmaz, K., Ayaz, M. (2016). Finite element modeling and control of a high-power SRM for hybrid electric vehicle. Simulation Modelling Practice and Theory, 62, 49–67. doi: 10.1016/j.simpat.2016.01.006
  9. Kalaivani, L., Subburaj, P., Willjuice Iruthayarajan, M. (2013). Speed control of switched reluctance motor with torque ripple reduction using non-dominated sorting genetic algorithm (NSGA-II). International Journal of Electrical Power & Energy Systems, 53, 69–77. doi: 10.1016/j.ijepes.2013.04.005
  10. Xin, Z., Yi, T. (2011). Research of hybrid electric locomotive control strategy. 2011 International Conference on System science, Engineering design and Manufacturing informatization. doi: 10.1109/icssem.2011.6081159
  11. Buriakovskyi, S. H., Maslii, A. S., Pomazan, D. P., Denis, I. V. (2016). Obgruntuvannia neobkhidnostinosti modernizatsii teplovozu ChME3 iz vykorystanniam hibrydnoi sylovoi ustanovky. Elektryfiatsiya transportu, 12, 82–86.
  12. Krishnan, R. (2006). Switched reluctance motor drives. Modeling. Simulation, Analysis, Design and Applications. CRC Press, 324–328.
  13. Miller, T. J. E. (2002). Optimal design of switched reluctance motors. IEEE Transactions on Industrial Electronics, 49 (1), 15–27. doi: 10.1109/41.982244
  14. Rymsha, V. V. (2004). Modelirovanie i sintez reaktivnyh i induktornyh elektromekhanicheskih preobrazovateley. Odessa, 336.
  15. Firago, B. I., Pavlyachik, L. B. (2007). Teoriya elektroprivoda. Minsk: Tekhnoperspektiva, 585.
  16. Kochneva, T. N., Kozhevnikov, A. V., Kochnev, N. V. (2013). Sintez modal'nogo regulyatora i ocenka effektivnosti modal'nogo upravleniya dlya dvuhmassovyh elektromekhanicheskih sistem. Vestnik Cherepoveckogo gosudarstvennogo universiteta, 4 (52), 15–22.
  17. Vadutov, O. S. (2013). Nastroyka tipovyh regulyatorov po metodu Ciglera-Nikol'sa. Tomsk: TPU, 10–15.
  18. Buryakovskiy, S. G., Lyubarskiy, B. G., Masliy, A. S., Masliy, A. S. (2013). Razrabotka i issledovanie sistemy upravleniya ventil'no-reaktivnym elektrodvigatelem. Vestnik NTU «KhPI». Ser.: Problemy avtomatizirovannogo elektroprivoda, 36, 195–197.
  19. Liubarskyi, B., Petrenko, А., Shaida, V., Maslii, A. (2017). Analysis of optimal operating modes of the induction traction drives for establishing a control algorithm over a semiconductor transducer. Eastern-European Journal of Enterprise Technologies, 4 (8 (88)), 65–72. doi: 10.15587/1729-4061.2017.109179
  20. Liubarskyi, B., Petrenko, О., Iakunin, D., Dubinina, O. (2017). Optimization of thermal modes and cooling systems of the induction traction engines of trams. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 59–67. doi: 10.15587/1729-4061.2017.102236

Downloads

Published

2018-02-02

How to Cite

Buriakovskyi, S., Babaiev, M., Liubarskyi, B., Maslii, A., Karpenko, N., Pomazan, D., Maslii, A., & Denys, I. (2018). Quality assessment of control over the traction valve-inductor drive of a hybrid diesel locomotive. Eastern-European Journal of Enterprise Technologies, 1(2 (91), 68–75. https://doi.org/10.15587/1729-4061.2018.122422