Development of the algorithm for aircraft control at inaccurate measurement of the state vector and variable accuracy parameter

Authors

  • Nataliya Khatsko National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-2543-0280
  • Helen Makogon Military institute of Tank Troops of National Technical University “Kharkiv Polytechnic Institute” Poltavskyi Shliakh, str., 198, Kharkiv, Ukraine, 61098, Ukraine https://orcid.org/0000-0003-1112-8707
  • Oleksandr Isakov Military institute of Tank Troops of National Technical University “Kharkiv Polytechnic Institute” Poltavskyi Shliakh, str., 198, Kharkiv, Ukraine, 61098, Ukraine https://orcid.org/0000-0003-0801-790X
  • Sergiy Krepchenko Military institute of Tank Troops of National Technical University “Kharkiv Polytechnic Institute” Poltavskyi Shliakh, str., 198, Kharkiv, Ukraine, 61098, Ukraine https://orcid.org/0000-0002-4885-0173
  • Ihor Cherepnov Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-2421-6503
  • Nikolai Kiriyenko Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-2573-9189
  • Victoria Zadorozhnya Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-6281-0637
  • Alexander Polyansky Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-0407-6435

DOI:

https://doi.org/10.15587/1729-4061.2018.123271

Keywords:

accuracy of terminal control, error of inertial measurements, strapdown inertial navigation system

Abstract

A parametric method of the synthesis of control in the closed circuit, taking into account explicitly generalized error of the inertial module, is presented. The law of control in the form of analytical formulas is typically assigned to the control program and does not change during flight of an unmanned aerial vehicle. This decreases the capabilities of the autonomous flight control system to overcome control errors, which occur for various reasons.

To verify assumptions about a possibility of improving the accuracy of an aerial vehicle control by the data of the strapdown inertial navigation system on a certain time interval of autonomous operation, the calculation experiment was conducted with the use of the developed software complex, simulating operation of the automatic flight control system.

Parametrization of the law of control is considered as the main contribution (the outcome). Introduction of the parameter made it possible to decrease a negative impact of measurement errors and other disturbing factors on accuracy of reaching by the point of flight destination. Through computer modeling, it was shown that it is possible to decrease the impact of a generalized measurement error on generation of values of control functions by changing the value of the parameter.

Analytical expressions for the estimation of accuracy of automatic control at the known generalized error of the inertial module and limited disturbing influences were obtained. After analyzing the influence of these factors on accuracy of the object control, a set of recommendations on selection of a variable parameter of synthesis of control depending on precision level of the sensors, used in the inertial module of measuring sensors, was generated.

Author Biographies

Nataliya Khatsko, National Technical University “Kharkiv Polytechnic Institute” Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of Computer Modeling of Processes and Systems

 

Helen Makogon, Military institute of Tank Troops of National Technical University “Kharkiv Polytechnic Institute” Poltavskyi Shliakh, str., 198, Kharkiv, Ukraine, 61098

PhD, Senior Lecturer

Department of Armored vehicles and military equipment

Oleksandr Isakov, Military institute of Tank Troops of National Technical University “Kharkiv Polytechnic Institute” Poltavskyi Shliakh, str., 198, Kharkiv, Ukraine, 61098

Lecturer

Department of Armored vehicles and military equipment

Sergiy Krepchenko, Military institute of Tank Troops of National Technical University “Kharkiv Polytechnic Institute” Poltavskyi Shliakh, str., 198, Kharkiv, Ukraine, 61098

Lecturer

Department of Armored vehicles and military equipment

Ihor Cherepnov, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Life Safety and Law

Nikolai Kiriyenko, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Life Safety and Law

Victoria Zadorozhnya, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Life Safety and Law

Alexander Polyansky, Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Life Safety and Law

References

  1. Revnivyh, S. G. (2012). Tendencii razvitiya global'noy sputnikovoy navigacii. Mezhdunarodnaya konferenciya po integrirovannym navigacionnym sistemam: XIX mezhdunarodnaya konferenciya. Sankt-Peterburg: GNC RF CNII “Elektropribor”, 266–276.
  2. Quan, W., Li, J., Gong, X., Fang, J. (2015). INS/CNS/GNSS Integrated Navigation Technology. Springer, 372. doi: 10.1007/978-3-662-45159-5
  3. Chiang, K.-W., Duong, T., Liao, J.-K. (2013). The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination. Sensors, 13 (12), 10599–10622. doi: 10.3390/s130810599
  4. Krut'ko, P. D. (1987). Obratnye zadachi dinamiki upravlyaemyh sistem. Lineynye modeli. Moscow: Nauka, 304.
  5. Nebylov, A., Tikhomirov, M., Benzerrouk, H. (2017). Development Stages and Prospects of Flight Control and Navigation Complexes for Aircraft. IFAC-PapersOnLine, 50 (1), 6434–6439. doi: 10.1016/j.ifacol.2017.08.1032
  6. Sabatini, R., Moore, T., Ramasamy, S. (2017). Global navigation satellite systems performance analysis and augmentation strategies in aviation. Progress in Aerospace Sciences, 95, 45–98. doi: 10.1016/j.paerosci.2017.10.002
  7. Miao, L., Shi, J. (2014). Model-based robust estimation and fault detection for MEMS-INS/GPS integrated navigation systems. Chinese Journal of Aeronautics, 27 (4), 947–954. doi: 10.1016/j.cja.2014.06.012
  8. Ci, U., Czichzhou, L., Ya, C., Czyan'e, L. (2016). Integrirovannaya s magnitnym kompasom BINS s vrashchayushchimsya izmeritel'nym modulem na MEMS. Giroskopiya i navigaciya, 3 (94), 3–13.
  9. Vas'kov, A. G., Klychnikov, V. V. (2017). Sposoby kompleksirovaniya navigacionnyh sistem letatel'nyh apparatov. Nauchno-prakticheskie issledovaniya, 2, 49–52.
  10. Barbour N. M. Inertial Navigation Sensors (2010). NATO RTO Lecture Series, RTO-EN-SET-116. Available at: http://www.dtic.mil/get-tr-doc/pdf?AD=ADA581016
  11. Golovan, A. A., Parusnikov, N. A. (2011). Matematicheskie osnovy navigacionnyh sistem. Chast' I. Matematicheskie modeli inercial'noy navigacii. Moscow: Izd-vo MGU, 132.
  12. Khatsko, N. Ye. (2017). Prohramne zabezpechennia dlia modeliuvannia roboty systemy avtomatychnoho keruvannia polotom po vymiram inertsialnykh datchykiv. Materialy mizhnarodnoi naukovo-praktychnoi konferentsiyi «Suchasni metodyky, innovatsiyi ta dosvid praktychnoho zastosuvannia u sferi tekhnichnykh nauk». Liublin, 30–33.
  13. Khatsko, N. (2013). Research of possibility of flight control using data of inertial low accuracy sensors. Journal of Mechanical Engineering, 16 (5), 32–35.

Downloads

Published

2018-02-09

How to Cite

Khatsko, N., Makogon, H., Isakov, O., Krepchenko, S., Cherepnov, I., Kiriyenko, N., Zadorozhnya, V., & Polyansky, A. (2018). Development of the algorithm for aircraft control at inaccurate measurement of the state vector and variable accuracy parameter. Eastern-European Journal of Enterprise Technologies, 1(9 (91), 32–38. https://doi.org/10.15587/1729-4061.2018.123271

Issue

Section

Information and controlling system