Application of cluster algorithm for multiextremal optimize of polymer composites
DOI:
https://doi.org/10.15587/1729-4061.2013.12361Keywords:
Multiextrem optimization, clustering algorithm, polymer composite, generalized indicator of qualityAbstract
The article presents the results of the solution of the problem of the multiextrem optimization of structure of polymer composite on the basis of the generalized indicator of quality. The problem was solved using the cluster algorithm of multiextrem optimization of A. Thorne. It was shown that the efficiency of multi-criteria optimization is significantly affected by the choice of cluster number algorithm. According to the presented results of calculations, the choice of the number of clusters, using the index method of Calinski - Harabasz and randomized approach of Sugar - James leads to a loss of local extrema if the extrema of the generalized indicator of quality are situated close enough. We have suggested modification of the search algorithm of the formal element, which takes into account the peculiarities of decision of the optimization problem, when determining the centers point and radii of area. This modification will reveal all known local extrema of the generalized indicator of qualityReferences
- Статюха, Г.О. Використання даних псевдоактивного експерименту для вирішення інженерних задач при експериментально-статистичному дослідженні полімерних композитів [Текст] / Г.О. Статюха, Н.Є. Теліцина, А.Г. Патрань // Наукові вісті НТУУ «КПІ». – № 5. – 2004. – С. 42–47
- Статюха, Г.О. Багатоекстремальна оптимізація процесу синтезу полімерного композиту на основі поліуретану [Текст] / Г.О. Статюха, Д.М. Складанний, Н.Є. Теліцина, О.В. Лизюк // Східноєвропейський журнал передових технологій, – №2/6 (26). – 2007. – С. 32–34
- Krol, P. Application of a Method for the Mathematical Experimental Statistical Modeling Approach to Ananlyze Physical-Chemical Properties of Interpenetrating Polymer Network of Polyurethane and Unsaturated Polyester [Text] / P. Krol, J. Wojturska, G.A. Statyukha, D.M. Skladannyy // Jornal of Polymer Science. – 2005, Vol. 97 – рр. 1855–1867.
- Зедгинидзе, Г. П. Планирование эксперимента для исследования многокомпонентных систем [Текст] / Г.П. Зедгинидзе; Академия Наук СССР, Научный совет по комплексной проблеме Кибернетика. – Москва: Наука. – 1976. – 390 с.
- Kaufman L. Finding Groups in Data: An Introduction to Cluster Analysis [Text] / L. Kaufman, P. Rousseeuw. – New York: Wiley. – 1990. – 368 p.
- Загоруйко, Н.Г. Прикладные методы анализа данных и знаний [Текст] / Н.Г. Загоруйко; Новосибирск: Издательство Института математики. – 1999. – 270 с. – ISBN 5-86134-060-9
- Krzanowski W. A criterion for determining the number of groupsin a dataset using sum of squares clustering [Text] / W. Krzanowski, Y. Lai // Biometrics. – 1985. – № 44. – pp. 23–34.
- Sugar C. Finding the number of clusters in a data set: An information theoretic approach [Text] / C. Sugar, G. James // J. of the American Statistical Association. – 2003. – № 98. – pp. 750–763.
- Calinski, R. B. Dendrite method for cluster analysis [Text] / R. B. Calinski, J. A. Harabasz // Communications in Statistics. – 1974. – № 93. – pp. 1–27.
- Семенкин, Е. С. Методы оптимизации в управлении сложными системами [Текст]: учебное пособие / Е.С. Семенкин, О.Э. Семенкина, В.А. Терсков; Россия. Министерство внутренних дел. – Красноярск: Сибирский юридический институт, 2000. – 254 с. – ISBN 5–93182–008–6.
- Статюха Г.О. Вступ до планування оптимального експерименту [Текст]: навч. посіб. / Г.О. Статюха, Д.М. Складанний, О.С. Бондаренко. – К.: НТУУ «КПІ», 2011. – 124 с. – 300 пр. ISBN 978-966-622-408-1
- Statyukha, G.A Telitsyna, N.E.,Penran A.G. (2004) Using Data Pseudo-Active Experiment to Solve Engineering Problems with Experimental and Statistical Polymer Composites Research. Research Bulletin of NTUU "KPI", 5, 42–47
- Statyukha, G.A., Skladannyy, D.M., Telitsyna, N.E., Lyzyuk, O.V. (2007) Multiextremal Optimization of Synthesis Polymeric Composites Based on Polyurethane. Eastern-European Journal of Enterprise Technologies, 2/6(26), 32–34
- Krol P., Wojturska, J., Statyukha, G.A., Skladannyy, D.M. (2005) Application of a Method for the Mathematical Experimental Statistical Modeling Approach to Ananlyze Physical-Chemical Properties of Interpenetrating Polymer Network of Polyurethane and Unsaturated Polyester. Jornal of Polymer Science, 97, 1855–1867.
- Zedginidze, G.P. (1976) Experimental Design for Studing of Multicomponent. Systems Moscow, “Nauka”.
- Kaufman, L. Rousseeuw, P. (1990) Finding Groups in Data: An Introduction to Cluster Analysis. New York: “Wiley”.
- Zagoruiko, N.G. (1999) Applied Data and Knowledge Analysis Methods, “Institute of mathematics”
- Krzanowski, W. Lai, Y. (1985) A criterion for determining the number of groupsin a dataset using sum of squares clustering. Biometrics, 44, 23–34.
- Sugar, C. James, G. (2003) Finding the number of clusters in a data set: An information theoretic approach. J. of the American Statistical Association, 98, 750–763.
- Calinski, R.B. Harabasz, J.A. (1974) Dendrite method for cluster analysis. Communications in Statistics, 93, 1–27.
- Semenkin, E.S., Semenkina O.E., Thirsk, V.A. (2000) Optimization methods in management of complex systems. Russia, Krasnoiarsk, “SJI”.
- Statyukha, G.A., Skladannyy, D.M., Bondarenko O.S. (2011) Introduction to Optimal Experimental Design. Kyiv, NTUU “KPI”
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Денис Миколайович Складанний
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.