Application of cluster algorithm for multiextremal optimize of polymer composites

Authors

  • Денис Миколайович Складанний National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremohy ave., 37, building 4, Kyiv, 03056, Ukraine https://orcid.org/0000-0003-3624-5336

DOI:

https://doi.org/10.15587/1729-4061.2013.12361

Keywords:

Multiextrem optimization, clustering algorithm, polymer composite, generalized indicator of quality

Abstract

The article presents the results of the solution of the problem of the multiextrem optimization of structure of polymer composite on the basis of the generalized indicator of quality. The problem was solved using the cluster algorithm of multiextrem optimization of A. Thorne. It was shown that the efficiency of multi-criteria optimization is significantly affected by the choice of cluster number algorithm. According to the presented results of calculations, the choice of the number of clusters, using the index method of Calinski - Harabasz  and randomized approach of Sugar - James leads to a loss of local extrema if the extrema of the generalized indicator of quality are situated close enough. We have suggested modification of the search algorithm of the formal element, which takes into account the peculiarities of decision of the optimization problem, when determining the centers point and radii of area. This modification will reveal all known local extrema of the generalized indicator of quality

Author Biography

Денис Миколайович Складанний, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremohy ave., 37, building 4, Kyiv, 03056

Ph.D., Associate Professor

Department of Cybernetics of Chemical Technology Processes

References

  1. Статюха, Г.О. Використання даних псевдоактивного експерименту для вирішення інженерних задач при експериментально-статистичному дослідженні полімерних композитів [Текст] / Г.О. Статюха, Н.Є. Теліцина, А.Г. Патрань // Наукові вісті НТУУ «КПІ». – № 5. – 2004. – С. 42–47
  2. Статюха, Г.О. Багатоекстремальна оптимізація процесу синтезу полімерного композиту на основі поліуретану [Текст] / Г.О. Статюха, Д.М. Складанний, Н.Є. Теліцина, О.В. Лизюк // Східноєвропейський журнал передових технологій, – №2/6 (26). – 2007. – С. 32–34
  3. Krol, P. Application of a Method for the Mathematical Experimental Statistical Modeling Approach to Ananlyze Physical-Chemical Properties of Interpenetrating Polymer Network of Polyurethane and Unsaturated Polyester [Text] / P. Krol, J. Wojturska, G.A. Statyukha, D.M. Skladannyy // Jornal of Polymer Science. – 2005, Vol. 97 – рр. 1855–1867.
  4. Зедгинидзе, Г. П. Планирование эксперимента для исследования многокомпонентных систем [Текст] / Г.П. Зедгинидзе; Академия Наук СССР, Научный совет по комплексной проблеме Кибернетика. – Москва: Наука. – 1976. – 390 с.
  5. Kaufman L. Finding Groups in Data: An Introduction to Cluster Analysis [Text] / L. Kaufman, P. Rousseeuw. – New York: Wiley. – 1990. – 368 p.
  6. Загоруйко, Н.Г. Прикладные методы анализа данных и знаний [Текст] / Н.Г. Загоруйко; Новосибирск: Издательство Института математики. – 1999. – 270 с. – ISBN 5-86134-060-9
  7. Krzanowski W. A criterion for determining the number of groupsin a dataset using sum of squares clustering [Text] / W. Krzanowski, Y. Lai // Biometrics. – 1985. – № 44. – pp. 23–34.
  8. Sugar C. Finding the number of clusters in a data set: An information theoretic approach [Text] / C. Sugar, G. James // J. of the American Statistical Association. – 2003. – № 98. – pp. 750–763.
  9. Calinski, R. B. Dendrite method for cluster analysis [Text] / R. B. Calinski, J. A. Harabasz // Communications in Statistics. – 1974. – № 93. – pp. 1–27.
  10. Семенкин, Е. С. Методы оптимизации в управлении сложными системами [Текст]: учебное пособие / Е.С. Семенкин, О.Э. Семенкина, В.А. Терсков; Россия. Министерство внутренних дел. – Красноярск: Сибирский юридический институт, 2000. – 254 с. – ISBN 5–93182–008–6.
  11. Статюха Г.О. Вступ до планування оптимального експерименту [Текст]: навч. посіб. / Г.О. Статюха, Д.М. Складанний, О.С. Бондаренко. – К.: НТУУ «КПІ», 2011. – 124 с. – 300 пр. ISBN 978-966-622-408-1
  12. Statyukha, G.A Telitsyna, N.E.,Penran A.G. (2004) Using Data Pseudo-Active Experiment to Solve Engineering Problems with Experimental and Statistical Polymer Composites Research. Research Bulletin of NTUU "KPI", 5, 42–47
  13. Statyukha, G.A., Skladannyy, D.M., Telitsyna, N.E., Lyzyuk, O.V. (2007) Multiextremal Optimization of Synthesis Polymeric Composites Based on Polyurethane. Eastern-European Journal of Enterprise Technologies, 2/6(26), 32–34
  14. Krol P., Wojturska, J., Statyukha, G.A., Skladannyy, D.M. (2005) Application of a Method for the Mathematical Experimental Statistical Modeling Approach to Ananlyze Physical-Chemical Properties of Interpenetrating Polymer Network of Polyurethane and Unsaturated Polyester. Jornal of Polymer Science, 97, 1855–1867.
  15. Zedginidze, G.P. (1976) Experimental Design for Studing of Multicomponent. Systems Moscow, “Nauka”.
  16. Kaufman, L. Rousseeuw, P. (1990) Finding Groups in Data: An Introduction to Cluster Analysis. New York: “Wiley”.
  17. Zagoruiko, N.G. (1999) Applied Data and Knowledge Analysis Methods, “Institute of mathematics”
  18. Krzanowski, W. Lai, Y. (1985) A criterion for determining the number of groupsin a dataset using sum of squares clustering. Biometrics, 44, 23–34.
  19. Sugar, C. James, G. (2003) Finding the number of clusters in a data set: An information theoretic approach. J. of the American Statistical Association, 98, 750–763.
  20. Calinski, R.B. Harabasz, J.A. (1974) Dendrite method for cluster analysis. Communications in Statistics, 93, 1–27.
  21. Semenkin, E.S., Semenkina O.E., Thirsk, V.A. (2000) Optimization methods in management of complex systems. Russia, Krasnoiarsk, “SJI”.
  22. Statyukha, G.A., Skladannyy, D.M., Bondarenko O.S. (2011) Introduction to Optimal Experimental Design. Kyiv, NTUU “KPI”

Published

2013-04-25

How to Cite

Складанний, Д. М. (2013). Application of cluster algorithm for multiextremal optimize of polymer composites. Eastern-European Journal of Enterprise Technologies, 2(4(62), 4–8. https://doi.org/10.15587/1729-4061.2013.12361

Issue

Section

Mathematics and Cybernetics - applied aspects